On Nonlinear Dynamics of Meddies
https://doi.org/10.7868/S2073667320030028
Abstract
The lenses of the Mediterranean water (LMW), also known as Meddies, well distinguishable in the Atlantic Ocean water. The field observations devoted to study Meddies are presented in numerous publications and provide information on their origination, distribution, spatial scales and temporal dynamic activities. The salt-fingers and double-diffusion at the Meddies top and bottom borders may be considered as only mechanisms causing the Meddies disappearance as the thermal — saline mesoscale anomalies in the surrounding Atlantic Ocean waters. Taking into account the Medies’ realistic scales it is shown that in temporal scales of about and less than a year the Meddies water mass may be considered as invariable. Then the Meddies conservation mass is valid in such temporal scales.
The Meddies (LMW) temporal variability analysis is carried out using the theoretical approach of intrusive lens in stratified fluid extended taking into account the Coriolis force. The Meddies (LMW) are considered with the center of gravity sitting at the level of equal density. The temporal variability occurs due to the resulting effect of the set of forces: the surplus pressure originated due to the density difference between the water inside the LMW and the ambient density field; the forces originated due to both the lens’ rotation (centrifugal) and the Earth rotation (Coriolis); the forces caused by the internal wave radiation and the viscosity action. The temporal variability of LMW constitutes of two principal stages:
1) the initial, inviscid stage (“young lens”), when balance of forces is formed by the forces of inertia, the surplus pressure, the centrifugal force, the Coriolis force and the force of wave resistance due to the internal wave radiation; the Coriolis force is a key factor supporting and keeping compact the anti-cyclonic LMW, the Meddies; it prevents the LMWs from breakup, limits their geometrical dimensions, affects the lens angular velocity variations. The cyclonic LMWs are destabilized by the Coriolis force, getting small thickness and under certain conditions may disappear as a density anomaly already at this stage;
2) the viscid stage (“old lens”) is characterized by a slow decreasing of the LMW thickness up to its limit value, that is determined by the LMW initial thickness, the initial LMW stratification as well as ambient stratification; during the final period of the viscous stage the exchange of heat and salinity with ambient water-mass may, on a characteristic temporal scales about a year, significantly influence on the degenerations of the LMW as a density anomaly; at this stage the anti-cyclonic LMW, the Meddy, continues to have the anti-cyclonic rotation.
Keywords
About the Authors
A. Yu. BenilovUnited States
130 Marina Bay Court, Highlands, NJ 07732
A. S. Safray
Russian Federation
117997, Nahimovsky Prospekt, 36, Moscow
B. N. Filyushkin
Russian Federation
117997, Nahimovsky Prospekt, 36, Moscow
N. G. Kojelupova
Russian Federation
117997, Nahimovsky Prospekt, 36, Moscow
References
1. Yan Xiao-Hai, Young-Heon Jo, W. Timothy Liu, Ming-Xia He. A New Study of the Mediterranean Outflow, Air–Sea Interactions, and Meddies Using Multisensor Data. Journal of Physical Oceanography. 2006, 36, 4, 691–710.
2. Bryden H.L., Candela J.C., Kinder T.H. Exchange through the Strait of Gibraltar. Progress in Oceanography. 1994, 33, Pergamon, 201–248.
3. Candela J.C. Mediterranean Water and Global Circulation. Ocean Circulation and Climate: Observing and Modelling the Global Ocean. / Eds. G. Siedler, J. Church, and J. Gould, Academic Press, 2001, 419–429.
4. Jia Yanli, Andrew C. Coward, Beverly A. De Cuevas, David J. Webb, Sybren S. Drijfhout. A Model Analysis of the Behavior of the Mediterranean Water in the North Atlantic. Journal of Physical Oceanography. 2007, 37, 3, 764–786.
5. Bower A.S., Serra N., Ambar I. Structure of the Mediterranean Undercurrent and Mediterranean Water spreading around the southwestern Iberian Peninsula. Journal of Geophysical Research. 2002, 107(C10), 3161.
6. Richardson P.L., Bower A.S., Zenk W. A census of meddies tracked by floats. Prog. Oceanogr. 2000, 45, 209–250.
7. Filyushkin B.N., Plakhin E.A. Experimental study of the first stage of Mediterranean water lens formation. Oceanology. 1996, 35, 6, 797–804.
8. Serra N., Ambar I., Kaase R.H. Observations and numerical modeling of the Mediterranean outflow splitting and eddy generation. Deep Sea Res. 2005, II, 52, 383–408.
9. McDowell S.E., Rossby H.T. Mediterranean Water: An Intense Mesoscale Eddy off the Bahamas. Science. 1978, 202, 4372, 1085–1087.
10. Dugan J.P., Mied R.P., Mignerey P.C., Schuetz A.P. Compact, Intrathermocline Eddies in the Sargasso Sea. Journal of Geophysical Research. 1982, N 1C, 385–393.
11. Armi L., Zenk W. Large Lenses of Highly Saline Mediterranean Water. Journal of Physical Oceanography. 1984, 14, 10, 1560–1576.
12. Richardson P.L., Walsh D., Armi L., Schröder M., Price J.F. Tracking three Meddies with SOFAR floats. Journal of Physical Oceanography. 1989, 19, 371–383.
13. Richardson P.L., McCartney M.S., Maillard C. A search for Meddies in historical data. Dynamics of Atmospheres and Oceans. 1991, 15, 241–265.
14. Käse R.H., Zenk W. Structure of the Mediterranean Water and Meddy characteristics in the northeastern Atlantic / W. Krauss, Warmwatersphere of the North Atlantic Ocean Berlin, 1996, Gebrüder Borntraeger, 365–395.
15. Richardson P.L., Tychensky A. Meddy trajectories in the Canary Basin measured during the Semaphore Experiment, 1993–1995. Journal of Geophysical Research. 1998, 103, 25029–25045.
16. Paillet Jerome, B. Le Cann, Xavier Carton, Yves Morel and Alain Serpette. Dynamics and Evolution of a Northern Meddy. Journal of Physical Oceanography. 2002, 32, 1, 55–79.
17. Bower A.S., Armi L., Ambar I. Lagrangian Observations of Meddy Formation During a Mediterranean Undercurrent Seeding Experiment. Journal of Physical Oceanography. 1997, 27, 2545–2575.
18. Fedorov K.N. (Editor). Intrathermocline eddies in the ocean. Moscow, IO RAS, 1986, 5–7.
19. Voropayev S.I., Afanasyev Y.D. Vortex Structures in a Stratified Fluid: Order from Chaos. Chapman and Hall, 1994. 230 p.
20. Afanasyev Y.D. Formation of vortex dipoles. Physics of Fluids. 2006, 18, 037103, 1–9.
21. Benilov A., Safray A., Filyushkin B., Kojelupova N. On Meddy Nonlinear Dynamics. 37th Annual Mid-Atlantic Bight Physical Oceanography and Meteorology. Stevens Institute of Technology. Hoboken, NJ. 2010, 20–21.
22. Zatsepin A.G. About a collapse of stratified spots. Doklady AN USSR. 1982, 265, 2, 460–463 (in Russian).
23. Afanasyev Y.D., Filippov I.A. Generation of intermediate water vortices in a rotating stratified fluid: Laboratory model. Journal of Geophysical Research. 1996, 101, C8, 18,167–18,174.
24. Hedstrom K., Armi L. An Experimental Study of Homogeneous Lenses in a stratified rotating fluid. J. Fl. Mech. 1988, 191, 535–556.
25. Chushman-Roisin B. Linear Stability of Large, Elliptical Warm-Core Rings. Journal of Physical Oceanography.1986, 16, 1158–1164.
26. Bashmachnikov I., Machin F., Mendonca A., Martins A. In situ and remote sensing signature of meddies east of the midAtlantic ridge. Journal of Geophysical Research. 2009, 114, C05018. doi: 10.1029/2008JC005032
27. Armi L., Hebert D., Oakey N., Price J., Richardson P., Rossby H., Ruddick B. Two years in the life of a Mediterranean salt lens. Journal of Physical Oceanography. 1989, 19, 3, 354–370.
28. Schultz Tokos K., Rossby H.T. Kinematics and dynamics of a Mediterranean salt lens. Journal of Physical Oceanography. 1991, 21, 879–892.
29. Pingree R.D., LeCann B. A shallow Meddy (a Smeddy) from the secondary Mediterranean salinity maximum. Journal of Geophysical Research. 1993, 98, 20169–20185.
30. Pingree R.D., LeCann B. Structure of a Meddy (Bobby 92) southeast of the Azores. Deep-Sea Research I. 1993, 40, 2077–2103.
31. Prater M.D., Sanford T.B. A Meddy off Cape St. Vincent. Part I: description. Journal of Physical Oceanography. 1994, 24, 1572–1586.
32. Tychensky A., Carton X. Hydrological and dynamical characterization of Meddies in the Azores region: a paradigm for baroclinic vortex dynamics. Journal of Geophysical Research. 1998, 103, 25061–25079.
33. Stammer D., Hinrichsen H.-H., Käse R.H. Can Meddies be detected by satellite altimetry? Journal of Geophysical Research. 1991, 96, 7005–7014.
34. Ruddick B. Intrusive mixing in a Mediterranean salt lens — intrusion slopes and dynamical mechanisms. Journal of Physical Oceanography. 1992, 22, 1274–1285.
35. Nandi P., Holbrook S., Pearse S., Paramo P., Schmitt R. Seismic reflection imaging of water mass boundaries in the Norwegian Sea. Geophys. Res. Lett. 2004, 31, L23311. doi: 10.1029/2004GL021325
36. Nakamura Y., Noguchi T., Tsuji T., Itoh S., Niino H., Matsuoka T. Simultaneous seismic reflection and physical oceanographic observations of oceanic fine structure in the Kuroshio extension front. Geophys. Res. Lett. 2006, 33, L23605, doi: 10.1029/2006GL027437
37. Biescas B., Sallarès V., Pelegrì J.L., Machín F., Carbonell R., Buffett G., Dañobeitia J.J., Calahorrano A. Imaging meddy fine structure using multichannel seismic data. Geophys. Res. Lett. 2008, 35, L11609. doi: 10.1029/2008GL033971
38. Ruddick B., Song H., Dong C., Pinheiro L. Water column seismic images as maps of temperature gradient. Oceanography. 2009, 22, 192–205.
39. Buffett G.G., Biescas B., Pelegri J.L., Machin F., Sallares V., Carbonell R., Klaeschen D., Hobbs R.W. Seismic reflection along the path of the Mediterranean Undercurrent. Cont. Shelf Res. 2009, 29, 1848–1860.
40. Buffett G.G., Hurich C.A., Vsemirnova E.A., Hobbs R.W., Sallares V., Carbonell R., Klaeschen D., Biescas B. Stochastic Heterogeneity Mapping Around A Mediterranean Salt Lens. Ocean Sci. 2010, 6, 423–429.
41. Filyushkin B.N. Investigation of intrathermocline lenses of Mediterranean origin (Cruise 16 of R/V “Vityaz”, June 3 — September 16, 1988). Oceanology. 1989, 29, 4, 535–536.
42. Maksimenko N.A. A comparative analysis of currents and seawater density fields into Mediterranean lenses by the data of “Mezopoligon”. Proceedings “Hydrophysical studies at “Mesopoligon” program”. Moscow, Nauka, 1988, 69–76 (in Russian).
43. Filyushkin B.N., Demidov A.N., Sarafanov A.A., Kozhelupova N.G. The peculiarity of the formation and spreading Mediterranean water mass at intermediate depths of the Atlantic Ocean. Waters masses of the oceans and sea. MAX Press, Moscow, 2007, 92–129 (in Russian).
44. Ivanov Yu.A., Kort V.G., Shapovalov S.M., Scherbinin A.D. Mezo-scale Intrusion lenses. Proceedings “Hydrophysical studies at “Mesopoligon” program”. Moscow, Nauka, 1988, 41–46 (in Russian).
45. Kostianoy A.G., Belkin G.M. A survey of observations on intrathermocline eddies in the world ocean. Mesoscale/synoptic coherent structure in geophysical turbulence. Proc. of the 20-th Int. Liege Colloq. on ocean hydrodynamic / Ed. J.C.J. Nihoul, B.M. Jamaat. Elsevier. 1989, 821–841.
46. Richardson P.L., Bower A.S., Zenk W. Summary of Meddies Tracked by Floats. International WOCE Newsletter. 1999, 34, 18–20.
47. Aleinik D.L., Plakhin E.A., Filyushkin B.N. On the mechanism of formation of intra thermocline lenses in the canyon area of the gulf Cadiz continental slope. Oceanology. 1998, 38, 5, 645–653 (in Russian).
48. Dykhno L.A. et al. Breakup of lenses of Mediterranean water on interaction with bottom relief. Oceanology. 1991, 31, 1, 38–41.
49. Shapiro G.I., Meshchanov S.L., Yemel’yanov M.V. Mediterranean water lens after a collision with seamounts. Oceanology. 1992, 32, 3, 279–283.
50. Aleinik D.L. The structure an evolution of a meddy and Azores frontal zone in autumn 1993. Ac. Sci. USSR. Oceanology. 1998, 38, 3, 312–322.
51. Filyushkin B.N., Aleinik D.L., Gruzinov B.M., Kozhelupova N.G. Dynamic degradation of the Mediterranean lenses in the Atlantic Ocean. Doklady Earth Sciences. 2002, 387a, 9, 1079–1082.
52. Shapiro G.I. Dynamics of an isolated intrathermocline eddy. Oceanology. 1986, 26, 1, 12–15.
53. Ruddick B.R. Anticyclonic lenses in large scale strain and shear. Journal of Physical Oceanography. 1987, 17, 741–749.
54. Benilov A. Yu., Gavrilin B.L. Island Turbulence of the Ocean Pycnocline. Ac. Sci. USSR. Oceanology. 1988, 28, 6, 700–705 (in Russian).
55. Benilov A. Yu. On the Mixed Regions Collapse in the Ocean Pycnocline. Ac. Sci. USSR. Oceanology. 1989, 29, 1, 33–39 (in Russian).
56. Benilov A.Y. Some Problems of Nonequilibrium Turbulence in the Nonsteady Turbulent Boundary Layers of the Ocean and Atmosphere. The Office of Naval Research, State-of-the-Art Workshop on Nonequilibrium Turbulence, March 10–12, 1993. / Arizona State University, Tempe, Arizona. 1993, 85287–6106, 92–93.
57. Lavrovsky E.K., Semenova I.P., Slyezkin L.N., Fominih V.V. Mediterranean lenses — liquid gyroscopes in the Oceans. Doklady RAS. 2000, 375, 1, 42–45 (in Russian).
58. Sokolovskiy M.A., Filyushkin B.N., Xavier J. Carton. Dynamics of intrathermocline vortices in a gyre flow over a seamount chain. Ocean Dynamics, Springer, 2013, 3–22. doi: 10.1007/s10236–013–0628-y
59. Ostrovsky A.G., Piterbarg L.I. Autoregressian model of sea surface temperature anomaly field in the North Atlantic. Oceanology. 1985, 25, 3, 333–334 (in Russian).
60. Maas L.R.M., Zahariev K. An exact, stratified model of a meddy. Dyn. Atm. and Oceans. 1996, 24, 1–4, 215–225.
61. Monin A.S., Ozmidov R.V. Turbulence in the Ocean. D. Reidel Publishing Company. 1985, 250 p.
62. Barenblatt G.I. Scaling, Self-similarity, and Intermediate Asymptotics. Cambridge University Press. 1996, 386 p.
Review
For citations:
Benilov A.Yu., Safray A.S., Filyushkin B.N., Kojelupova N.G. On Nonlinear Dynamics of Meddies. Fundamental and Applied Hydrophysics. 2020;13(3):20-42. https://doi.org/10.7868/S2073667320030028