Preview

Фундаментальная и прикладная гидрофизика

Расширенный поиск

Явление арктического усиления и его движущие механизмы

https://doi.org/10.7868/S2073667320030016

Аннотация

Представлен научный обзор одной из важнейших особенностей глобальной климатической системы — арктического усиления: более высокая скорость изменения приземной температуры воздуха в Арктическом регионе по сравнению с Северным полушарием или глобальным средним. Арктическое усиление является региональным проявлением более общего явления — полярного усиления. Однако антарктическое усиление значительно слабее арктического. Основными механизмами, определяющими арктическое усиление, являются различные климатические обратные связи, работающие по-разному в разных широтах, и перенос тепла к полюсу, вызванный атмосферной и океанической циркуляцией. Современные научные результаты в основном продемонстрировали относительную роль различных климатических обратных связей в формировании арктического усиления. От более важных к менее важным — это обратная связь вертикального градиента температуры, обратная связь Планка и альбедо поверхности. Однако некоторые другие возможные механизмы остаются малоизученными. В частности, вклад изменяющегося во времени меридионального переноса тепла довольно неясен. Более того, меридиональная адвекция тепла атмосферой и океаном может играть существенную роль в наблюдаемых изменениях интенсивности арктического усиления на разных временных масштабах.

Об авторах

М. М. Латонин
Санкт-Петербургский государственный университет; Международный центр по окружающей среде и дистанционному зондированию имени Нансена
Россия

199034, Университетская наб., д. 7–9, г. Санкт-Петербург

199034, 14-я линия В.О., д. 7, Бизнес-центр «Преображенский», офис 49, г. Санкт-Петербург



И. Л. Башмачников
Санкт-Петербургский государственный университет; Международный центр по окружающей среде и дистанционному зондированию имени Нансена
Россия

199034, Университетская наб., д. 7–9, г. Санкт-Петербург

199034, 14-я линия В.О., д. 7, Бизнес-центр «Преображенский», офис 49, г. Санкт-Петербург



Л. П. Бобылёв
Международный центр по окружающей среде и дистанционному зондированию имени Нансена
Россия

199034, 14-я линия В.О., д. 7, Бизнес-центр «Преображенский», офис 49, г. Санкт-Петербург



Список литературы

1. Serreze M.C., Barry R.G. Processes and impacts of Arctic amplification: A research synthesis // Global and Planetary Change. 2011. V. 77, N 1–2. P. 85–96. doi: 10.1016/j.gloplacha.2011.03.004

2. Arrhenius S. On the influence of carbonic acid in the air upon the temperature of the ground // Philosophical Magazine and Journal of Science. 1896. Series 5, V. 41. P. 237–276.

3. Polyakov I.V., Alekseev G.V., Bekryaev R.V., Bhatt U., Colony R., Johnson M.A., Karklin V.P., Makshtas A.P., Walsh J., Yulin A.V. Observationally based assessment of polar amplification of global warming // Geophys. Res. Lett. 2002. V. 29, N 18. P. 25–1–25–4. doi:10.1029/2001GL011111

4. Brigham-Grette J. Contemporary Arctic change: a paleoclimate déjà vu? // Proc. Natl. Acad. Sci. 2009. V. 106. P. 18431–18432.

5. Allen M.R., Dube O.P., Solecki W., Aragon-Durand F., Cramer W., Humphreys S., Kainuma M., Kala J., Mahowald N., Mulugetta Y., Perez R., Wairiu M., and Zickfeld K. Framing and Context // Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., Zhai P., Portner H.-O., Roberts D., Skea J., Shukla P.R., Pirani A., Moufouma-Okia W., Pean C., Pidcock R., Connors S., Matthews J.B.R., Chen Y., Zhou X., Gomis M.I., Lonnoy E., Maycock T., Tignor M., and Waterfield T. (eds.)]. IPCC: Geneva, Switzerland, 2018. P. 49–91.

6. Collins M., Knutti R., Arblaster J., Dufresne J.-L., Fichefet T., Friedlingstein P., Gao X., Gutowski W.J., Johns T., Krinner G., Shongwe M., Tebaldi C., Weaver A.J., Wehner M. Long-term climate change: Projections, commitments and irreversibility // Climate Change 2013 — The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. P. 1029–1136. doi:10.1017/CBO9781107415324.024

7. Smith D.M., Screen J.A., Deser C., Cohen J., Fyfe J.C., García-Serrano J., Jung T., Kattsov V., Matei D., Msadek R., Peings Y., Sigmond M., Ukita J., Yoon J.-H., Zhang X. The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: investigating the causes and consequences of polar amplification // Geoscientific Model Development Discussions. 2018. P. 1–42. doi: 10.5194/gmd-2018–82

8. Davy R., Chen L., Hanna E. Arctic amplification metrics // International Journal of Climatology. 2018. V. 38, N 12. P. 4384–4394. doi: 10.1002/joc.5675

9. Bekryaev R.V., Polyakov I.V., Alexeev V.A. Role of Polar Amplification in Long-Term Surface Air Temperature Variations and Modern Arctic Warming // J. Climate. 2010. V. 23 (14). P. 3888–3906. doi: 10.1175/2010JCLI3297.1

10. Kobashi T., Shindell D.T., Kodera K., Box J.E., Nakaegawa T., Kawamura K. On the origin of multidecadal to centennial Greenland temperature anomalies over the past 800 years // Climate of the Past. 2013. V. 9. P. 583–596. doi: 10.5194/cp-9–583–2013

11. Francis J.A., Vavrus S.J. Evidence for a wavier jet stream in response to rapid Arctic warming // Environ. Res. Lett. 2015. V. 10, 014005. doi: 10.1088/1748–9326/10/1/014005

12. Johannessen O.M., Kuzmina S.I., Bobylev L.P., Miles M.W. Surface air temperature variability and trends in the Arctic: new amplification assessment and regionalization // Tellus A: Dynamic Meteorology and Oceanography. 2016. V. 68, 28234. doi: 10.3402/tellusa.v68.28234

13. Goosse H., Kay J.E., Armour K.C., Bodas-Salcedo A., Chepfer H., Docquier D., Jonko A., Kushner P.J., Lecomte O., Massonnet F., Park H.-S., Pithan F., Svensson G., Vancoppenolle M. Quantifying climate feedbacks in polar regions // Nat. Commun. 2018. V. 9. doi: 10.1038/s41467–018–04173–0

14. Hobbs W.R. et al. A review of recent changes in Southern Ocean sea ice, their drivers and forcings // Global and Planetary Change. 2016. V. 143. P. 228–250.

15. Swart N.C., Fyfe J.C., Hawkins E., Kay J.E., Jahn A. Influence of internal variability on Arctic sea-ice trends // Nat. Clim. Change. 2015. V. 5. P. 86–89.

16. Notz D. How well must climate models agree with observations? // Phil. Trans R. Soc. A. 2015. V. 373, 20140164. doi: 10.1098/rsta.2014.0164

17. Zunz V., Goosse H., Massonnet F. How does internal variability influence the ability of CMIP5 models to reproduce the recent trend in Southern Ocean sea ice extent? // Cryosphere. 2013. V. 7. P. 451–468.

18. Flato G. et al. Evaluation of Climate Models. Climate Change: The Physical Science Basis // Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, USA, 2013.

19. Jones J.M. et al. Assessing recent trends in high-latitude Southern Hemisphere surface climate // Nat. Clim. Change. 2016. V. 6. P. 917–926.

20. Pithan F., Mauritsen T. Arctic amplification dominated by temperature feedbacks in contemporary climate models // Nat. Geosci. 2014. V. 7. P. 181–184.

21. Manabe S., Wetherald R. The effects of doubling the CO2 concentration on the climate of a general circulation model // J. Atmos. Sci. 1975. V. 32. P. 3–15.

22. Taylor P.C. et al. A decomposition of feedback contributions to polar warming amplification // J. Climate. 2013. V. 26. P. 7023–7043.

23. Holland M.M., Bitz C.M. Polar amplification of climate change in coupled models // Clim. Dyn. 2003. V. 21. P. 221–232.

24. Screen J.A., Simmonds I. The central role of diminishing sea ice in recent Arctic temperature amplification // Nature. 2010. V. 464. P. 1334–1337.

25. Roe G.H. Feedbacks, timescales and seeing red // Annu. Rev. Earth. Planet. Sci. 2009. V. 37. P. 93–115.

26. Hansen J.E. et al. Climate sensitivity: analysis of feedback mechanisms // Climate Processes and Climate Sensitivity. 1984. P. 130–163.

27. Bony S. et al. How well do we understand and evaluate climate change feedback processes? // J. Climate. 2006. V. 19. P. 3445–3482.

28. Crook J.A., Forster P.M., Stuber N. Spatial patterns of modeled climate feedback and contributions to temperature response and polar amplification // J. Climate. 2011. V. 24. P. 3575–3592.

29. Hall A. The role of surface albedo feedback in climate // J. Climate. 2004. V. 17. P. 1550–1568.

30. Winton M. Surface albedo feedback estimates for the AR4 climate models // J. Climate. 2006. V. 19. P. 359–365.

31. Qu X., Hall A. What controls the strength of snow-albedo feedback? // J. Climate. 2007. V. 20. P. 3971–3981.

32. Dessler A.E., Zhang Z., Yang P. Water-vapor climate feedback inferred from climate fluctuations, 2003–2008 // Geophys. Res. Lett. 2008. V. 35, L20704. doi: 10.1029/2008GL035333

33. Gordon N.D., Jonko A.K., Forster P.M., Shell K.M. An observationally based constraint on the water-vapor feedback // J. Geophys. Res. Atmos. 2013. V. 118, N 12. P. 12, 435–12, 443.

34. Graversen R.G., Wang M. Polar amplification in a coupled climate model with locked albedo // Climate Dynamics. 2009. V. 33. P. 629–643.

35. Vial J., Dufresne J.-L., Bony S. On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates // Climate Dynamics. 2013. V. 41. P. 3339–3362.

36. Zelinka M.D., Klein S.A., Hartmann D.L. Computing and partitioning cloud feedbacks using cloud property histograms. Part II: attribution to changes in cloud amount, altitude, and optical depth // J. Climate. 2012. V. 25. P. 3736–3754.

37. Andrews T., Gregory J.M., Webb M.J., Taylor K.E. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere–ocean climate models // Geophys. Res. Lett. 2012. V. 39, N 9. L09712. doi: 10.1029/2012GL051607

38. Schweiger A.L., Lindsay R.W., Vavrus S., Francis J.A. Relationships between Arctic sea ice and clouds during Autumn // J. Climate. 2008. V. 21. P. 4799–4810.

39. Morrison A.L., Kay J.E., Chepfer H., Guzman R., Yettella V. Isolating the liquid cloud response to recent Arctic sea ice loss using spaceborne lidar observations // J. Geophys. Res. Atmos. 2018. V. 123. P. 473–490.

40. Kay J.E. et al. Recent advances in Arctic cloud and climate research // Curr. Clim. Change Rep. 2016. V. 2, N 4. P. 159–169.

41. Boisvert L.N., Wu D.L., Shie C.-L. Increasing evaporation amounts seen in the Arctic between 2003 and 2013 from AIRS data // J. Geophys. Res. Atmos. 2015. V. 120. P. 6865–6881.

42. Mitchell J.F.B., Senior C.A., Ingram W.J. On CO2 and climate: a missing cloud feedback? // Nature. 1989. V. 341. P. 132–134.

43. Bodas-Salcedo A., Andrews T., Karmalkar A.V., Ringer M.A. Cloud liquid water path and radiative feedbacks over the Southern Ocean // Geophys. Res. Lett. 2016. V. 43, N 20. P. 10,938–10,946.

44. Wang X., Key J.R. Recent trends in arctic surface, cloud, and radiation properties from space // Science. 2003. V. 299. P. 1725–1728.

45. Min He, Yongxiang Hu, Nan Chen, Donghai Wang, Jianping Huang, Knut Stamnes. High cloud coverage over melted areas dominates the impact of clouds on the albedo feedback in the Arctic // Scientific Reports. 2019. V. 9. P. 1–11. doi: 10.1038/s41598–019–44155-w

46. Maykut G.A. The surface heat and mass balance // The Geophysics of Sea Ice. 1986. P. 395–464 (Plenum Press).

47. Bitz C.M., Roe G.H. A mechanism for the high rate of sea ice thinning in the Arctic Ocean // J. Climate. 2004. V. 17. P. 3623–3632.

48. Edwards T.L. et al. Effect of uncertainty in surface mass balance–elevation feedback on projections of the future sea level contribution of the Greenland ice sheet // Cryosphere. 2014. V. 8. P. 195–208.

49. Edwards T.L. et al. Probabilistic parameterization of the surface mass balance–elevation feedback in regional climate model simulations of the Greenland ice sheet // Cryosphere. 2014. V. 8. P. 181–194.

50. Alexeev V. A., Jackson C.H. Polar amplification: is atmospheric heat transport important? // Climate Dynamics. 2013. V. 41. P. 533–547.

51. Feldl N., Bordoni S., Merlis T.M. Coupled high-latitude climate feedbacks and their impact on atmospheric heat transport // J. Climate. 2017. V. 30. P. 189–201.

52. Kay J.E. et al. The influence of local feedbacks and northward heat transport on the equilibrium Arctic climate response to increased greenhouse gas forcing in coupled climate models // J. Climate. 2012. V. 25. P. 5433–5450.

53. Roe G.H., Feldl N., Armour K.C., Hwang Y.-T., Frierson D.M.W. The remote impacts of climate feedbacks on regional climate predictability // Nat. Geosci. 2015. V. 8. P. 135–139.

54. Cai M., Lu J. Dynamical greenhouse-plus feedback and polar warming amplification. Part II: meridional and vertical asymmetries of the global warming // Climate Dynamics. 2007. V. 29. P. 375–391.

55. Feldl N., Roe G.H. The nonlinear and nonlocal nature of climate feedbacks // J. Climate. 2013. V. 26. P. 8289–8304.

56. Zelinka M.D., Hartmann D.L. Climate feedbacks and their implications for poleward energy flux changes in a warming climate // J. Climate. 2011. V. 25. P. 608–624.

57. Overland J.E. et al. Nonlinear response of mid-latitude weather to the changing Arctic // Nat. Clim. Change. 2016. V. 6. P. 992–999.

58. Marshall J. et al. The ocean’s role in the transient response of climate to abrupt greenhouse gas forcing // Climate Dynamics. 2015. V. 4. P. 2287–2299.

59. Jungclaus J.H., Lohmann K., Zanchettin D. Enhanced 20th-century heat transfer to the Arctic simulated in the context of climate variations over the last millennium // Climate of the Past. 2014. V. 10. P. 2201–2213.

60. Bitz C.M., Gent P.R., Woodgate R.A., Holland M.M., Lindsay R. The influence of sea ice on ocean heat uptake in response to increasing CO2 // J. Climate. 2006. V. 19. P. 2437–2450.

61. Armour K.C., Marshall J., Scott J., Donohoe A., Newsom E.R. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport // Nat. Geos. 2016. V. 9. P. 549–554.

62. Steele M., Morison J.H., Curtin T.B. Halocline formation in the Barents Sea // J. Geophys. Res. 1995. V. 100, N C1. P. 881–894. doi: 10.1029/94JC02310

63. Schauer U., Loeng H., Rudels B., Ozhigin V.K., Dieck W. Atlantic Water flow through the Barents and Kara Seas // Deep Sea Research Part I: Oceanographic Research Papers. 2002. V. 49, N 12. P. 2281–2298. doi: 10.1016/S0967–0637(02)00125–5

64. Smedsrud L.H., Ingvaldsen R., Nilsen J.E.Ø., Skagseth Ø. Heat in the Barents Sea: Transport, storage, and surface fluxes // Ocean Sci. 2010. V. 6, N 1. P. 219–234. doi: 10.5194/os-6–219–2010

65. Beszczynska-Möller A., Fahrbach E., Schauer U., Hansen E. Variability in Atlantic Water temperature and transport at the entrance to the Arctic Ocean, 1997–2010 // ICES Journal of Marine Science. 2012. V. 69, N 5. P. 852–863. doi: 10.1093/icesjms/fss056

66. Schauer U., Beszczynska-Möller A. Problems with estimation and interpretation of oceanic heat transport — Conceptual remarks for the case of Fram Strait in the Arctic Ocean // Ocean Sci. 2009. V. 5, N 4. P. 487–494. doi: 10.5194/os-5–487–2009

67. Aagaard K. Wind-driven transports in the Greenland and Norwegian Seas // Deep Sea Research. 1970. V. 17. P. 281–291.

68. Legutke S.A numerical investigation of the circulation in the Greenland and Norwegian Seas // J. Phys. Oceanogr. 1991. V. 21, N 1. P. 118–148.

69. Furevik T., Nilsen J.E.Ø. Large-scale atmospheric circulation variability and its impacts on the Nordic Seas ocean climate — A review // The Nordic Seas: An integrated perspective, Geophysical Monograph Series. 2005. P. 105–136. Washington: American Geophysical Union. doi: 10.1029/158GM09

70. Skagseth Ø. Monthly to annual variability of the Norwegian Atlantic slope current: Connection between the northern North Atlantic and the Norwegian Sea // Deep Sea Research Part I: Oceanographic Research Papers. 2004. V. 51, N 3. P. 349–366. doi: 10.1016/j.dsr.2003.10.014

71. Skagseth Ø., Orvik K.A., Furevik T. Coherent variability of the Norwegian Atlantic slope current derived from TOPEX/ ERS altimeter data // Geophys. Res. Lett. 2004. V. 31, L14304. doi: 10.1029/2004GL020057

72. Lien V.S., Vikebø F.B., Skagseth Ø. One mechanism contributing to co-variability of the Atlantic inflow branches to the Arctic // Nat. Commun. 2013. V. 4, N 1. 1488. doi: 10.1038/ncomms2505

73. Chatterjee S., Raj R.P., Bertino L., Skagseth Ø., Ravichandran M., Johannessen O.M. Role of Greenland Sea gyre circulation on Atlantic Water temperature variability in the Fram Strait // Geophys. Res. Lett. 2018. V. 45, N 16. P. 8399–8406. doi: 10.1029/2018GL079174

74. Aagaard K., Coachman L.K., Carmack E. On the halocline of the Arctic Ocean // Deep Sea Res. Part A. Oceanogr. Res. Papers. 1981. V. 28. P. 529–545.

75. Rudels B. Arctic Ocean circulation, processes and water masses: a description of observations and ideas with focus on the period prior to the International Polar Year 2007–2009 // Prog. Oceanogr. 2015. V. 132. P. 22–67.

76. Sirevaag A., Fer I. Vertical heat transfer in the Arctic Ocean: the role of double-diffusive mixing // J. Geophys. Res. 2012. V. 117, N C07010. doi: 10.1029/2012JC007910

77. Kelley D.E. Fluxes through diffusive interfaces: a new formulation // J. Geophys. Res. 1990. V. 95. P. 3365–3371.

78. Carmack E., Polyakov I., Padman L., Fer I., Hunke E., Hutchings J., Jackson J., Kelley D., Kwok R., Layton C., Melling H., Perovich D., Persson O., Ruddick B., Timmermans M.-L., Toole J., Ross T., Vavrus S., Winsor P. Toward Quantifying the Increasing Role of Oceanic Heat in Sea Ice Loss in the New Arctic // Bull. Amer. Meteor. Soc. V. 96, N 12. P. 2079–2105. doi: 10.1175/BAMS-D-13–00177.1

79. Koläs E., Fer I. Hydrography, transport and mixing of the West Spitsbergen Current: The Svalbard Branch in summer 2015 // Ocean Sci. 2018. V. 14, N 6. P. 1603–1618. doi: 10.5194/os-14–1603–2018

80. Ivanov V. et al. Arctic Ocean Heat Impact on Regional Ice Decay: A Suggested Positive Feedback // J. Phys. Oceanogr. 2016. V. 46. P. 1437–1456.

81. Polyakov I. V., Pnyushkov A.V., Alkire M.B., Ashik I.M., Baumann T.M., Carmack E.C., Goszczko I., Guthrie J., Ivanov V.V., Kanzow T., Krishfield R., Kwok R., Sundfjord A., Morison J., Rember R., Yulin A. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean // Science. 2017. V. 356. P. 285–291.

82. Toole J.M., Timmermans M.-L., Perovich D.K., Krishfield R.A., Proshutinsky A., Richter‐Menge J.A. Influences of the ocean surface mixed layer and thermohaline stratification on Arctic Sea ice in the central Canada Basin // J. Geophys. Res. 2010. V. 115, C10018. doi: 10.1029/2009JC005660

83. Krishfield R., Toole J., Proshutinsky A., Timmermans M. Automated Ice-Tethered Profilers for Seawater Observations under Pack Ice in All Seasons // J. Atmos. Oceanic Technol. 2008. V. 25. P. 2091–2105. doi: 10.1175/2008JTECHO587.1

84. Proshutinsky A., Krishfield R., Timmermans M.L., Toole J., Carmack E., McLaughlin F., Williams W.J., Zimmermann S., Itoh M., Shimada K. Beaufort Gyre freshwater reservoir: State and variability from observations // J. Geophys. Res. 2009. V. 114, C00A10.

85. Timmermans M.-L., Toole J., Krishfield R. Warming of the interior Arctic Ocean linked to sea ice losses at the basin margins // Sci. Adv. 2018. V. 4, eaat6773. doi: 10.1126/sciadv.aat6773

86. Timmermans M.-L., Marshall J., Proshutinsky A., Scott J. Seasonally derived components of the Canada Basin halocline // Geophys. Res. Lett. 2017. V. 44. P. 5008–5015.

87. Graham R.M., Cohen L., Petty A.A., Boisvert L.N., Rinke A., Hudson S.R., Nicolaus M., Granskog M.A. Increasing frequency and duration of Arctic winter warming events // Geophys. Res. Lett. 2017. V. 44, N 13. P. 6974–6983. doi: 10.1002/2017GL073395

88. Alekseev G., Kuzmina S., Bobylev L., Urazgildeeva A., Gnatiuk N. Impact of atmospheric heat and moisture transport on the Arctic warming // Int. J. Climatol. 2019. V. 39, N 8. P. 3582–3592. doi: 10.1002/joc.6040

89. Cullather R.I., Lim Y.K., Boisvert L.N., Brucker L., Lee J.N., Nowicki S.M. Analysis of the warmest Arctic winter, 2015– 2016 // Geophys. Res. Lett. 2016. V. 43, N 20. P. 10808–10816. doi: 10.1002/2016GL071228

90. Kim B.M., Hong J.Y., Jun S.Y., Zhang X., Kwon H., Kim S.J., Kim J.H., Kim S.W., Kim H.K. Major cause of unprecedented Arctic warming in January 2016: critical role of an Atlantic windstorm // Sci. Rep. 2017. V. 7, 40051. doi: 10.1038/srep40051

91. Woods C., Caballero R., Svensson G. Large-scale circulation associated with moisture intrusions into the Arctic during winter // Geophys. Res. Lett. 2013. V. 40, N 17. P. 4717–4721. doi: 10.1002/grl.50912

92. Woods C. and Caballero R. The role of moist intrusions in winter Arctic warming and sea ice decline // J. Climate. 2016. V. 29, N 12. P. 4473–4485. doi: 10.1175/JCLI-D-15–0773.1

93. Overland J.E., Turet P. Variability of the atmospheric energy flux across 70°N computed from the GFDL data set // The Polar Oceans and Their Role in Shaping the Global Environment. Geophysical Monograph Series. 1994. V. 85. P. 313–325. Washington, DC: American Geophysical Union.

94. Graversen R.G. Do changes in the midlatitude circulation have any impact on the Arctic surface air temperature trend? // J. Climate. 2006. V. 19, N 20. P. 5422–5438. doi: 10.1175/JCLI3906.1

95. Serreze M.C., Barrett A.P., Cassano J.J. Circulation and surface controls on the lower tropospheric air temperature field of the Arctic // J. Geophys. Res. Atmos. 2011. V. 116, N D7. D07104. doi: 10.1029/2010JD015127

96. Kim H.M., Kim B.M. Relative contributions of atmospheric energy transport and sea ice loss to the recent warm Arctic winter // J. Climate. 2017. V. 30, N 18. P. 7441–7450. doi: 10.1175/JCLI-D-17–0157.1

97. Alexeev V.A., Langen P.L., Bates J.R. Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks // Climate Dynamics. 2005. V. 24. P. 655–666. doi: 10.1007/s00382–005–0018–3

98. Yoshimori M., Abe-Ouchi A., Laîné A. The role of atmospheric heat transport and regional feedbacks in the Arctic warming at equilibrium // Climate Dynamics. 2017. V. 49. P. 3457–3472. doi: 10.1007/s00382–017–3523–2

99. Semenov V.A. Influence of oceanic inflow to the Barents Sea on climate variability in the Arctic region // Dokl. Earth Sc. 2008. V. 418, N 1. P. 91–94. doi: https://doi.org/10.1134/S1028334X08010200

100. Kim K.Y., Hamlington B.D., Na H., Kim J. Mechanism of seasonal Arctic sea ice evolution and Arctic amplification // Cryosphere. 2016. V. 10, N 5. P. 2191–2202. doi: 10.5194/tc-10–2191–2016

101. Yurova A., Bobylev L.P., Zhu Y., Davy R., Korzhikov A. Ya. Atmospheric heat advection in the Kara Sea region under main synoptic processes // Int. J. Climatol. 2018. V. 39, N 1. P. 361–374. doi: 10.1002/joc.5811

102. Bashmachnikov I. L., Yurova A.Y., Bobylev L.P. et al. Seasonal and interannual variations of the heat fluxes in the Barents Sea region // Izvestiya, Atmospheric and Oceanic Physics. 2018. V. 54, N 2. P. 239–249.

103. Bengtsson L., Semenov V.A., Johannessen O.M. The early twentieth-century warming in the Arctic — A possible mechanism // J. Climate. 2004. V. 17, N 20. P. 4045–4057.

104. Petoukhov V., Semenov V.A. A link between reduced Barents–Kara sea ice and cold winter extremes over northern continents // J. Geophys. Res. Atmos. 2010. V. 115, N D21. P. 1–11. doi: 10.1029/2009JD013568

105. Kalavichchi K.A., Bashmachnikov I.L. Mechanism of a Positive Feedback in Long-Term Variations of the Convergence of Oceanic and Atmospheric Heat Fluxes and the Ice Cover in the Barents Sea // Izvestiya, Atmospheric and Oceanic Physics. 2019. V. 55, N 6. P. 640–649.

106. Proshutinsky A., Johnson M. Two circulation regimes of the wind-driven Arctic Ocean // J. Geophys. Res. 1997. V. 102, N C6. P. 12493–12514.

107. Proshutinsky A., Dukhovskoy D., Timmermans M.-L., Krishfield R., Bamber J.L. Arctic circulation regimes // Phil. Trans. R. Soc. A. 2015. V. 373, 20140160. doi: 10.1098/rsta.2014.0160

108. Proshutinsky A., Bourke R.H., McLaughlin F.A. The role of the Beaufort Gyre in Arctic climate variability: seasonal to decadal climate scales // Geophys. Res. Lett. 2002. V. 29, N 23. P. 15–1–15–4. doi: 10.1029/2002GL015847

109. Malmberg S.-A., Jonsson S. Timing of deep convection in the Greenland and Iceland Seas // ICES J. Mar. Sci. 1997. V. 54. P. 300–309. doi: 10.1006/jmsc.1997.0221

110. Dukhovskoy D.S., Johnson M., Proshutinsky A. Arctic decadal variability: an autooscillatory system of heat and fresh water exchange // Geophys. Res. Lett. 2004. V. 31, L03302. doi: 10.1029/2003GL019023

111. Dukhovskoy D.S., Johnson M., Proshutinsky A. Arctic decadal variability from an idealized atmosphere–ice–ocean model: 1. Model description, calibration, and validation // J. Geophys. Res. 2006. V. 111, C06028. doi: 10.1029/2004JC002821

112. Dukhovskoy D.S., Johnson M., Proshutinsky A. Arctic decadal variability from an idealized atmosphere–ice–ocean model: 2. Simulation of decadal oscillations // J. Geophys. Res. 2006. V. 111, C06029. doi: 10.1029/2004JC002820

113. De Steur L., Hansen E., Gerdes R., Karcher M., Fahrbach E., Holfort J. Freshwater fluxes in the east Greenland current: a decade of observations // Geophys. Res. Lett. 2009. V. 36, L23611. doi: 10.1029/2009GL041278

114. Mauritzen C. et al. Closing the loop — approaches to monitoring the state of the Arctic Mediterranean during the International Polar Year 2007–2008 // Prog. Oceanogr. 2011. V. 90. P. 62–89. doi: 10.1016/j.pocean.2011.02.010

115. Bamber J., Broeke van den M., Ettema J., Lenaerts J., Rignot E. Recent large increases in freshwater fluxes from Greenland into the North Atlantic // Geophys. Res. Lett. 2012. V. 39, L19501. doi: 10.1029/2012GL052552

116. Frauenfeld O.W., Knappenberger P.C., Michaels P.J. A reconstruction of annual Greenland ice melt extent, 1785–2009 // J. Geophys. Res. 2011. V. 116, D08104. doi: 10.1029/2010JD014918

117. Kobashi T., Severinghaus J.P., Barnola J.-M., Kawamura K., Carter T., Nakaegawa T. Persistent multi-decadal Greenland temperature fluctuation through the last millennium // Clim. Change. 2010. V. 100. P. 733–756. doi: 10.1007/s10584–009–9689–9

118. Dukhovskoy D.S., Yashayaev I., Proshutinsky A., Bamber J.L., Bashmachnikov I.L., Chassignet E.P., Lee C.M., Tedstone A.J. Role of Greenland Freshwater Anomaly in the Recent Freshening of the Subpolar North Atlantic // J. Geophys. Res.: Oceans. 2019. V. 124, N 5. P. 3333–3360.

119. Семенов В.А., Мохов И.И., Полонский А.Б. Моделирование влияния естественной долгопериодной изменчивости в Северной Атлантике на формирование аномалий климата // Морской гидрофизический журнал. 2014. N 4. С. 14–27.

120. Chen X., Tung K.K. Global surface warming enhanced by weak Atlantic overturning circulation // Nature. 2018. V. 559. P. 387–391.

121. Overland J.E., Wang M. Resolving future Arctic/Midlatitude weather connections // Earth’s Future. 2018. V. 6. P. 1146– 1152. doi: 10.1029/2018EF000901

122. Barnes E.A., Screen J.A. The impact of Arctic warming on the midlatitude jet‐stream: Can it? Has it? Will it? // WIREs Clim. Change. 2015. V. 6, N 3. P. 277–286.


Рецензия

Для цитирования:


Латонин М.М., Башмачников И.Л., Бобылёв Л.П. Явление арктического усиления и его движущие механизмы. Фундаментальная и прикладная гидрофизика. 2020;13(3):3-19. https://doi.org/10.7868/S2073667320030016

For citation:


Latonin M.M., Bashmachnikov I.L., Bobylev L.P. The Arctic Amplification Phenomenon and Its Driving Mechanisms. Fundamental and Applied Hydrophysics. 2020;13(3):3-19. https://doi.org/10.7868/S2073667320030016

Просмотров: 373


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)