Modeling of the M2 Surface Tide in the Region of the Franz-Josef Land and Svalbard Archipelagos
Abstract
The existing models reproduce a contradictory pattern of tides in the region of the Franz-Josef Land (FJL) and Svalbard archipelagos. To refine it, we used the 3D finite-element hydrostatic model QUODDY-4. The region of interest was considered not as an isolated area, but as an element of the tidal dynamics of the entire Barents Sea. It is shown that in this region there are no other amphidromes, except for the degenerated amphidrome with its center at the Spitsbergen Island. There are two more peculiarities of this region such as the anticyclonic gyre of the horizontal wave flux of the barotropic tidal energy, as well as an increase (approximately, by one order of magnitude) of values of this gyre in the vicinity of Svalbard compared to the given values in the vicin-ity of FJL.
About the Authors
B. A. KaganRussian Federation
A. A. Timofeev
Russian Federation
References
1. Владимиров О.А., Титов В.Б. Опыт расчета котидальных карт с учетом интерференции приливных волн // Тр. ГОИН, 1959. Вып.37. С.155–177.
2. Сгибнева Л.А. О приливах Баренцева моря // Тр. ГОИН, 1964. Вып.75. С.5–19.
3. Kowalik Z. A study of the M2 tide in the ice-covered Arctic Ocean // Modeling, Identification and Control. 1987. V.2, N 4. P.201–233.
4. Dmitriev N.E., Proshutinsky A.Yu., Loyning T.B., Vinje T. Tidal ice dynamics in the area of Svalbard and Franz-Josef Land // Polar Res. 1991. V.9, N 2. P.193–205.
5. Schwiderski E.W. Tides / Ed.: Hurdle B.G. The Nordic Seas. New York: Springer-Verlag, 1986. P.191–209.
6. Gjevik B., Nost E., Straume T. Model simulations of the tides in the Barents Sea // Geophys. Res. 1994. Vol.99, N C2. P.3337–3350.
7. Kowalik Z., Proshutinsky A.Yu. The Arctic Ocean tides / Eds: O.Johanessen et al. The Polar Oceans and Their Role in Shaping the Global Environment // Geophys. Monogr. Ser. V.85. Washington: AGU, 1994. P.137–158.
8. Kowalik Z., Proshutinsky A.Yu. Topographic enhancement of tidal motion in the western Barents Sea // J. Geophys. Res. 1995. V.100, N C2. P.2613–2637.
9. Padman L., Erofeeva S. A barotropic reverse tidal model for the Arctic Ocean // Geophys. Res. Let. 2004. V.31, N 2. L02303, doi:10.1029/2003GL019003.
10. Chen C. et al. A new high-resolution unstructured grid finite volume Arctic Ocean model (AO-FVCOM): An application for tidal studies // Geophys. Res. 2009. V.114, N C8, C08017, doi:10.1029/2008JC004941.
11. Lynch D.R. Three-dimensional diagnostic model for baroclinic wind-driven and tidal circulation in shallow seas. FUNDY-4 User's Manual. Darthmouth College, Hanover, New Hampshire, Report Number NML-90-2, 1990.
12. Lynch D.R., Gray W.G. A wave equation model for finite element tidal computations // Computers and Fluids. 1979. V.7. P.207–228.
13. Lynch D.R., Werner F.E. Three-dimensional hydrodynamics on finite elements. Part 1: Linearized harmonic model // Int. J. Numer. Meth. in Fluids. 1987. V.7. P.871–909.
14. Lynch D.R., Werner F.E. Three-dimensional hydrodynamics on finite elements. Part II: Nonlinear time-stepping model. Int. J. Numer. Meth. in Fluids, 1991. V.12. P.507–533.
15. Lynch D.R., Werner F.E., Greenberg D.A., Loder J.W. Diagnostic model for baroclinic and wind-driven circu-lation in shallow seas // Cont. Shelf Res. 1992, V.12, N 1. P.37–64.
16. Ip J.T.C., Lynch D.R. QUODDY-3 User's Manual: Comprehensive coastal circulation simulation using finite elements: Nonlinear prognostic time-stepping model. Thayer School of Engineering, Darthmouth College, Ha-nover, New Hampshire, Report Number NML-95-1, 1995.
17. Smagorinsky J. General circulation experiments with the primitive equations // Month. Wea. Rev. 1963. V.91. P.99–164.
18. Huthnance J.M. On trapped waves over a continental shelf // Fluid Mech. 1975. V.69, Pt.2. P.689–704.
19. Ефимов В.В., Куликов Е.А., Рабинович А.Б., Файн И.В. Волны в пограничных областях океана. Л.: Гидрометеоиздат, 1985. 280 с.
Review
For citations:
Kagan B.A., Timofeev A.A. Modeling of the M2 Surface Tide in the Region of the Franz-Josef Land and Svalbard Archipelagos. Fundamental and Applied Hydrophysics. 2013;6(1):4-13. (In Russ.)