Preview

Fundamental and Applied Hydrophysics

Advanced search

Numerical Simulation of the Stratification Effect on the Drag Coefficient of a Moving Ice Keel in a Two-Layer Fluid

Abstract

This paper considers numerical simulation of a moving ice keel in a two-layer fluid. The immersed boundary method is used for modeling of the non-stationary complex geometry on the rectangular grids. The results of the drag force computations for various Froude numbers are presented in comparison with the laboratory experiments.

 

About the Author

E. V. Mortikov
Федеральное государственное бюджетное учреждение науки Институт океанологии им. П.П.Ширшова РАН; Научно-исследовательский вычислительный центр МГУ им. М.В.Ломоносова
Russian Federation


References

1. Lepparanta M. The drift of sea ice. Berlin: Springer, 2005.

2. Steiner N. Introduction of variable drag coefficients into sea-ice models // Ann. Glaciol. 2001. V.33, N 1. P.181−186.

3. Williams E., Swithinbank C., Robin G. De Q. A submarine sonar study of Arctic pack ice // J. Glaciol. 1975. V.15, N 73. P.349−362.

4. Wadhams P. Sea ice thickness distribution in Fram Strait // Nature. 1983. V.305, N 5930. P.108–111.

5. Morison J.H., McPhee M.G., Maykut G.A. Boundary layer, upper ocean and ice observations in the Greenland Sea Marginal Ice Zone // J. Geophys. Res. 1987. V.92, N C7. P.6987−7011.

6. Pite H.D., Topham D.R., van Hardenberg B.J. Laboratory measurements of the drag force on a family of twodimensional ice keel models in a two-layer flow // J. Phys. Oceanogr. 1995. V.25, N 12. P.3008−3031.

7. Lu P., Li Z., Cheng B., Lepparanta M. A parameterization of the ice-ocean drag coefficient // J. Geophys. Res. 2011. V.116, N C7. P.19−33.

8. Jameel M.I., Rowe R.D., Topham D.R. Stratified flow under an ice keel – a numerical approach // Int. J. Numer. Meth. Fluids. 1993. V.16, N 5. P.353−364.

9. Cummins P.F., Topham D.R., Pite H.D. Simulated and experimental two-layer flows past isolated twodimensional obstacles // Fluid Dyn. Res. 1994. V.14, N 3. P.105−119.

10. Skyllingstad E.D., Paulson C.A., Pegau W.S., McPhee M.G., Stanton T. Effects of keels on ice bottom turbulence exchange // J. Geophys. Res. 2003. V.108, N C12. P.3372−3387.

11. Topham D.R., Pite H.D., Johnston P.J., Richards D.L. Stratified flows generated by an arctic ice keel // Preprints of Third Int. Symp. On Stratified Flows, ASCE. 1987. P.975−984.

12. Su S.W., Lai M.C., Lin C.A. An immersed boundary technique for simulating complex flows with rigid boundary // Computers and Fluids. 2007. V.36, N 2. P.313−324.

13. Мортиков Е.В. Применение графических процессоров для численного моделирования течения вязкой несжимаемой жидкости в областях сложной конфигурации методом погруженной границы // Вычислительные методы и программирование. 2012. Т.13, № 1. С.177−191.

14. Mittal R., Iaccarino G. Immersed boundary methods // Ann. Rev. Fluid Mech. 2005. V.37. P.239−261

15. Tseng Y.-H., Ferziger J.H. A ghost-cell immersed boundary method for flow in complex geometry // J. of Comp. Phys. 2003. V.192, N 2. P.593−623.

16. Mohd Yusof J. Combined immersed boundary/B-spline methods for simulation of flow in complex geometries // CTR Annual Research Briefs, Center for Turbulence Research. Stanford: Stanford University Press, 1997. P.317−328.

17. Fadlun E.A., Verzicco R., Orlandi P., Mohd-Yusof J. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations // J. of Comp. Phys. 2000. V.161, N 1. P.35−60.

18. Balaras E. Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations // Computers and Fluids. 2004. V.33, N 3. P.375−404.

19. Peskin C.S. The immersed boundary method // Acta Numerica. V.11. P.479−517.

20. Chorin A.J. Numerical solution of the Navier-Stokes equations // Mathematics of Computation. 1968. V.22, N 104. P.745−762.

21. Brown D.L., Cortez R., Minion M.L. Accurate projection method for the incompressible Navier-Stokes equations // J. of Comp. Phys. 2001. V.168, N 2. P.464−499.

22. Kim J., Moin P. Application of a fractional-step method to incompressible Navier-Stokes equations // J. of Comp. Phys. 1985. V.59, N 2. P.308−323.

23. Morinishi Y., Lund T.S., Vasilyev O.V., Moin P. Fully conservative higher order finite-difference schemes for incompressible flow // J. of Comp. Phys. 1998. V.143, N 1. P.90−124.

24. Van der Vorst H.A. Iterative Krylov methods for large linear systems. Cambridge: Cambridge University Press, 2003.

25. Wesseling P. An introduction to multigrid methods. New York: Whiley, 1992.

26. Ольшанский М.А. Лекции и упражнения по многосеточным методам. М.: Изд-во МГУ, 2003.

27. Liu X.-D., Osher S.J., Sethian J.A. Computing interface motion in compressible gasdynamics // J. of Comp. Phys. 1992. V.100, N 2. P.209−228.

28. Jiang G.-S. Peng D. Weighted ENO schemes for Hamiltonial-Jacobi equations // SIAM J. Sci. Comput. 1997. V.21. P.2126−2143.

29. Pourquie M., Breugem W.P., Boersma B.J. Some issues related to the use of immersed boundary methods to represent square obstacles // Int. J. for Multiscale Computational Engineering. 2009. V.7, N 6. P.509−522.

30. Domenichini F. On the consistency of the direct forcing method in the fractional step solution of the NavierStokes equations // J. of Comp. Phys. 2008. V.227, N 12. P.6372−6384.

31. Guy R.D., Hartenstine D.A. On the accuracy of direct forcing immersed boundary methods with projection methods // J. of Comp. Phys. 2010. V.229, N 7. P.2479−2496.

32. Griffith B.E., Luo X., McQueen D.M., Peskin C.S. Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method // Int. J. of Applied Mechanics. 2009. V.1, N 1. P.137−177.

33. Seo J.H., Mittal R. A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations // J. of Comp. Phys. 2011. V.230, N 11. P.7347−7363.

34. Yang X., Zhang X., Li Z., He G.W. A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations // J. of Comp. Phys. 2009. V.228, N 20. P.7821−7836.

35. Miller M.J., Thorpe A.J. Radiation conditions for the lateral boundaries of limited-area numerical methods // Quart. J.R. Met. Soc.1981. V.107, N 453. P.615−628.

36. Breuer M., Peller N., Rapp Ch., Manhart M. Flow over periodic hills – Numerical and experimental study in a wide range of Reynolds numbers // Computers and Fluids. 2009. V.38, N 2. P.433−457.


Review

For citations:


Mortikov E.V. Numerical Simulation of the Stratification Effect on the Drag Coefficient of a Moving Ice Keel in a Two-Layer Fluid. Fundamental and Applied Hydrophysics. 2012;5(3):12-22. (In Russ.)

Views: 61


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)