Preview

Fundamental and Applied Hydrophysics

Advanced search

Sensitivity of the Tidal Dynamics to the Spatial Variability of Hydrodynamic Roughness of the Bottom as Illustrated by the Pechora Sea Example

Abstract

The results of investigation of the Pechora Sea tidal dynamics sensitivity to variations of the external governing parameters, obtained with the use of the 3D finite-element hydrostatic model QUODDY-4, are considered in this paper. It is shown that the tidal characteristics are weakly sensitive to variations of the critical depth separating the subdomains of  rough and incompletely rough bottoms, and are strongly sensitive to variations of hydrodynamic roughness of the bottom.

 

About the Authors

B. A. Kagan
Санкт-Петербургский филиал Института океанологии им. П.П.Ширшова РАН
Russian Federation


E. V. Sofina
Санкт-Петербургский филиал Института океанологии им. П.П.Ширшова РАН; ФГБОУ ВПО «Российский государственный гидрометеорологический университет»
Russian Federation


E. Rashidi
ФГБОУ ВПО «Российский государственный гидрометеорологический университет»
Russian Federation


References

1. Taylor G.I. Tidal friction in the Irish Sea. Philosophical Transactions of the Royal Society. London, 1919, A220: 1–33.

2. Марчук Г.И., Каган Б.А. Динамика океанских приливов. Л.: Гидрометеоиздат, 1991. 472 с.

3. Carrera J., Neuman S.P. Estimation of aquifer parameters under transient and steady state conditions: 1. Maximum likelihood method incorporating prior information. Water Resource Research, 1986, 22: 199–210.

4. Thacker W.C., Long R.B. Fitting dynamics to data. // J. of Geophys. Res. 1988, 93: 1227–1240.

5. Das S.K., Lardner R.W. On the estimation of parameters of hydraulic models by assimilation of periodic tidal data // J. Geophys. Res. 1991. 96: 15187–15196.

6. Das S.K., Lardner R.W. Variational parameter estimation for a two-dimensional numerical tidal model // Intern. J. for Numerical Methods in Fluids. 1992, 15: 313–327.

7. Smedstad O.M., O'Brien J.J. Variational data assimilation and parameter estimation in an equatorial Pacific Ocean model // Progress in Oceanography. 1991. 26: 179–241.

8. Lardner R.W. Optimal control of open boundary conditions for a numerical tidal model // Computer Methods in Applied Mechanics and Engineering. 1993. 102: 367–387.

9. Ullman D.S., Wilson R.E. Model parameter estimation from data assimilation modeling: Temporal and spatial variability of bottom drag coefficient in the Hudson estuary // J. of Geophys. Res. 1998. 103: 5531–5549.

10. Heemink A.W., Mouthaan E.E.A., Roest M.R.T., Vollebregt E.A.H., Robaczewska K.B., Verlaan M. Inverse 3D shallow water flow modelling of the continental shelf // Continental Shelf Res. 2002, 22: 465–484.

11. He Y., Lu X., Qiu Z., Zhao J. Shallow water tidal constituents in the Bohai Sea and the Yellow Sea from a numerical adjoint model with TOPEX/Poseidon altimeter data // Continental Shelf Res. 2004. 24: 1521–1529.

12. Lu X., Zhang J. Numerical study on spatially varying bottom friction coefficient of a 2D tidal model with adjoint method // Continental Shelf Res. 2006. 26: 1905–1923.

13. Heathershaw A.D. Measurements of turbulence in the Irish Sea benthic boundary layer / Ed. Mc Cave I.N. The Benthic Boundary Layer. Plenum Press, N.Y. and L., 1976. Р.11–31.

14. Sternberg R.W. Predicting initial motion and bedload transport of sediment particles in the shallow marine environment. / Eds.: Swift J.P. et al. Shelf Sediment Transport. Dowden, Hutchison and Ross Inc., Strasburg, Pa., 1972. Р.61–82.

15. Дикинсон Р.Е. Чувствительность климата / Под ред. Д.В.Чаликова. Динамика климата. Л.: Гидрометеоиздат, 1988. С.114–146 (пер. с англ.).


Review

For citations:


Kagan B.A., Sofina E.V., Rashidi E. Sensitivity of the Tidal Dynamics to the Spatial Variability of Hydrodynamic Roughness of the Bottom as Illustrated by the Pechora Sea Example. Fundamental and Applied Hydrophysics. 2012;5(3):4-11. (In Russ.)

Views: 60


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)