Preview

Fundamental and Applied Hydrophysics

Advanced search

Можно ли применять к Балтийскому морю известные модели оптических свойств воды?

Abstract

Commonly used optical models of natural waters have been analyzed in the context of their applicability in the Baltic Sea. By use of a large data set collected at the Baltic, we found that published before relationships between scattering, attenuation and backscattering coefficients at wavelength 550 nm in ocean waters are valid for Baltic as well. When the same data were used for validation of the relationships connecting absorption and scattering coefficients of the chlorophyll and absorption coefficients of Colored Dissolved Organic Matter (CDOM) with chlorophyll concentration, the result shows a large discrepancy, disqualifying them in the complicated environment of the Baltic Sea. 

About the Authors

I. Levin
Санкт-Петербургский филиал Института океанологии им. П.П.Ширшова РАН
Russian Federation


M. Darecki
Институт океанологии ПАН
Poland


S. Sagan
Институт океанологии ПАН
Poland


P. Kowalczuk
Институт океанологии ПАН
Poland


A. Zdun
Институт океанологии ПАН
Poland


T. Radomyslskaya
Санкт-Петербургский филиал Института океанологии им. П.П.Ширшова РАН
Russian Federation


M. Rodionov
Санкт-Петербургский филиал Института океанологии им. П.П.Ширшова РАН
Russian Federation


References

1. Копелевич О.В. Оптические свойства морской воды // Оптика океана. Т.1. М.: Наука, 1983. С.150–234.

2. Sathyendranath S., Prieur L., Morel A. A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters // Intern. J. of Rem. Sensing. 1989. V.10. P.1373–1394.

3. Morel A., Loisel H. Apparent optical properties of oceanic water: dependence on the molecular scattering contribution// Applied Optics. 1998. V.37, N 21. P.4765–4776.

4. Kopelevich O.V. The current low-parametric models of seawater optical properties// Proc. 1th International Conf. «Current Problems in Optics of Natural Waters». St.Petersburg, 2001. Р.18–23.

5. Bricaud A., Morel A., Babin M., Allaly K., Claustre H. Variation of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models // J. Geophys. Res. 1998. V.103, N C13. P.31,033–31,044.

6. Bricaud A., Babin M., Morel A., Claustre H. Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization // J. Geophys. Res. 1995. V.100, N C7. P.13,321– 13,332.

7. Morel A., Maritorena S. Bio-optical properties of oceanic waters: A reappraisal // J. Geophys. Res. 2001. V.106, N C4. P.7163–7180.

8. Loisel H., Morel A. Light scattering and chlorophyll concentration in case 1 waters: a reexamination // Limnology and Oceanography. 1998. V.43, N 5. P.847–858.

9. Morel A., Antoine D., Gentili B. Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function // Applied Optics. 2002. V.41, N 30. P.6289–6306.

10. Pope R.M., Fry E.S. Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements // Applied Optics. 1997. V.36, N 33. P.8710–8723.

11. Morel A. Are the empirical relationships describing the bio-optical properties of case 1 waters consistent and internally compatible? // J. Geophys. Res. 2009. V.114, N C01016. doi: 10.1029/2008JC004803.

12. Haltrin V. Chlorophyll-based model on seawater optical properties // Appl.Optics. 1999. V.38, N 33. P.6826– 6832.

13. Левин И.М., Левина Е.И., Гильберт Г.Д., Стюарт С.Ю. Оптимальный алгоритм дистанционного определения оптически активных веществ в океане с помощью многоканального спектрометра // Изв. РАН. Физика атмосферы и океана. 2005. T.41, № 5. C.693–701.

14. Levin I., Levina E., Gilbert G., Stewart S. Role of sensor noise in hyperspectral remote sensing of natural waters: Application to retrieval of phytoplankton pigments // Remote Sensing of Environment. 2005. V.95, N 2. P.264–271.

15. Levin I.M., Levina E.I. Effect of atmospheric interference and sensor noise in retrieval of optically active materials in the ocean by hyperspectral remote sensing // Applied Optics. 2007. V.46, N 28. P.6896–6906.

16. Левин И.М., Копелевич О.В. Корреляционные соотношения между первичными гидрооптическими характеристиками в области спектра около 550 нм // Океанология. 2007. Т.47, № 3. С.344–348.

17. Dolin L., Gilbert G., Levin I., Luchinin A. Theory of imaging through wavy sea surface. Nizhniy Novgorod: Institute of Applied Physics, 2006. 171 p.

18. Kowalczuk P. Seasonal variability of yellow substance absorption in the surface layer of the Baltic sea // J. Geophys. Res. 1999. V.104, N C12. P.30,047–30,058.

19. Kowalczuk P., Olszewski J., Darecki M., Kaczmarek S. Empirical relationships between coloured dissolved organic matter and apparent optical properties in Baltic Sea waters // Intern. J. of Rem. Sensing. 2005. V.26, N 2. P.345–370.

20. Zaneveld J.R.V., Kitchen J.C., Moore C. The scattering error correction of reflecting-tube absorption meters // Ocean Optics XII (Jaffe, J.S., Ed.), Proc. SPIE. 1994. V.2258. P.44–55.

21. Smith R.C., Baker K.S. Optical properties of the clearest natural waters (200-800 nm) // Appl.Opt. 1981. V.20, N 2. P.177–184.

22. Козлянинов М.В. Руководство по гидрооптическим измерениям в море // Тр. ИОАН. 1961. Т.47. С.37– 79.

23. Копелевич О.В., Maштаков Ю.Л., Русанов С.Ю. Аппаратура и методика исследования оптических свойств морской воды // Гидрофизические и гидрооптические исследования в Атлантическом и Тихом океанах. 1974. М.: Наука. С.97–107.

24. Petzold T.J. Volume scattering function for selected ocean waters. San Diego: Scripps Inst. of Oceanography, 1972. 79 p.

25. Gould R.W., Arnone R.A., Martinolich P.M. Spectral dependence of the scattering coefficient in case 1 and 2 waters // Appl. Opt. 1999. V.38, N 12. Р.2377–2383.

26. Lee Z., Carder K.L., Mobley C.D., Steward R.G, Patch J.S. Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization // Appl. Opt. 1999. V.38, N 18. Р.3831–3843.

27. Morel A., Antoine D., Gentili B. Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function // Appl. Opt. 2002. V.41. P.6289–6306.


Review

For citations:


Levin I., Darecki M., Sagan S., Kowalczuk P., Zdun A., Radomyslskaya T., Rodionov M. . Fundamental and Applied Hydrophysics. 2012;5(4):80-87. (In Russ.)

Views: 98


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)