Preview

Fundamental and Applied Hydrophysics

Advanced search

Modelling the Light Absorption Coefficients of Phytoplankton in Pomeranian Lakes (Northern Poland)

Abstract

In 2004-08 the absorption properties of phytoplankton was measured in 15 northern Polish lakes of different trophicity. At the same time the concentrations of optically active substances in these lakes were also measured. These data were used to test the model of the absorption properties of phytoplankton, derived by Bricaud et al. for case 1 oceanic waters (hereafter referred to as Bricaud's parameterisation), to predict the spectra of light absorption by phytoplankton aph for lakes in Pomerania. This study shows the limitations of this model to lacustrine phytoplankton; and the reasons for them are discussed. In addition, an analogous model of light absorption by phytoplankton in the investigated lakes was derived on the same mathematical basis as Bricaud's model, but with different values of the relevant empirical parameters. For the sake of simplicity, the analysis covered the coefficients of light absorption only by surface water phytoplankton. The results were compared with those obtained for case 2 waters by other authors using similar models.

About the Authors

D. Ficek
Померанский университет
Poland


J. Meler
Институт океанологии, Польская академия наук
Poland


T. Zapadka
Померанский университет
Poland


J. Stoń-Egiert
Институт океанологии, Польская академия наук
Poland


References

1. Bricaud A., Babin M., Morel A., Claustre H. Variability in the chlorophyll-specific absorption-coefficients of natural phytoplankton – analysis and parameterisation // J. Of Geophys. Res.-Oceans. 1995. V.100. P.13321–13332.

2. Bidigare R.R., Ondrusek M.E., Morrow J.H., Kiefer D.A. In vivo absorption properties of algal pigments // SPIE Ocean Optics, 1990. X 1302. P.290–302.

3. Wozniak B., Dera J., Ficek D., Majchrowski R., Karczmarek S., Ostrowska M., Koblentz-Mishke O.I. Model of the in vivo spectral absorption of algal pigments. Part 1. Mathematical apparatus // Oceanologia, 2000. V.42 (2). P.177–190.

4. Majchrowski R., Woźniak B., Dera J., Ficek D., Kaczmarek S., Ostrowska M., Koblentz-Mishke O.I. Model of the in vivo spectral absorption of algal pigments. Part 2. Practical applications of the model // Oceanologia, 2000. V.42 (2). P.191–202.

5. Woźniak B., Dera J. Light Absorption in Sea Water // Springer, 2007. 452 p.

6. Reinart A., Paavel B., Pierson D., Strömbeck N. Inherent and apparent optical properties of Lake Peipsi // Estonia, Boreal Environment Research. 2004. V.9. P.429–445.

7. Albert A. Inversion technique for optical remote sensing in shallow water. University of Hamburg, 2004. 187 p.

8. Lee Z., Carder K. Hyperspectral remote sensing, in Remote sensing of coastal aquatic environments // Springer, Dortdrecht. P.181–204.

9. Paavel B., Arst H., Herlevi A. Dependence of spectral distribution on inherent optical properties of lake waters on the concentrations of different water constituents // Nordic Hydrology, 2007. V.38(3). P.265–285.

10. Jeffrey S.W., Mantoura R.F.C., Wright S.W. Phytoplankton pigments in oceanography, UNESCO Publishing, 2005. 661 p.

11. Jeffrey S.W., Humphrey G.F. New spectrophotometric equation for determining chlorophyll a, b, c1 and c2, Biochem. Physiol. Pflanz., 1975, 167. P.194–204.

12. Tassan S., Ferrari G.M. An alternative approach to absorption measurements of aquatic particles retained on filters // Limnol. Oceanogr., 1995. V.40 (8). P.1347–1357.

13. Tassan S., Ferrari G.M. A sensitivity analysis of the ‘Transmittance-Reflectance’ method for measuring light absorption by aquatic particles // J. Plankton Res. 2002. V.24 (8). P.757–774.

14. Butler W.L. Absorption of light by turbid materials // J. Opt. Soc. A m., 1962. V.52(3). P.292–299.

15. Kaczmarek S., Stramski D., Stramska M. The new pathlength amplification factor investigation // Abstract Publ., Baltic Sea Sci. Congr., 2003. Helsinki. P.149.

16. Stramska M., Stramski D., Kaczmarek S., Allison D.B., Schwarz J. Seasonal and regional differentiation of biooptical properties within the north polar Atlantic // J. Geophys. Res. 2006. 111, C08003. 16 p. doi:10.1029/2005JC003293.

17. Kirk J.T.O. Light and Photosynthesis in Aquatic Ecosystem. Cambridge University Press, 1996. UK. 509 p.

18. Le C., Li Y., Zha D. Sun D. Specific absorption coefficient and the phytoplankton package effect in Lake Taihu. China, Hydrobiologia, 2009. 619. P.27–37.

19. Binding C.E., Jerome J.H., Booty W.G., Bukata R.P. Spectral absorption properties of dissolved and particulate matter in Lake Erie. Remote Sensing of Environment, 2008. 112: P.1702–1711.

20. Stæhr P.A., Markager S. Parameterization of the chlorophyll a-specific in vivo light absorption coefficient covering estuarine, coastal and oceanic waters // Intern.J. of Remote Sensing, 2004. V.25(22). P.5117–5130.

21. Ficek D., Kaczmarek S., Stoń-Egiert J., Woźniak B., Majchrowski R., Dera J. Spectra of light absorption by phytoplankton pigments in the Baltic; conclusions to be drawn from a Gaussian analysis of empirical data // Oceanologia. 2004. V.46(4). P.533–555.


Review

For citations:


Ficek D., Meler J., Zapadka T., Stoń-Egiert J. Modelling the Light Absorption Coefficients of Phy￾toplankton in Pomeranian Lakes (Northern Poland). Fundamental and Applied Hydrophysics. 2012;5(4):54-63.

Views: 68


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)