Research of the influence of internal waves on the optical characteristics of the sea surface in the shelf zone of Peter the Great Bay
https://doi.org/10.7868/S2073667320020069
Abstract
Based on in situ measurements of the hydrological and bio-optical characteristics of the marine water, an analysis was made of the variations of the simulated remote sensed reflectance spectra of the sea during the passage of internal waves in the shelf zone of Peter the Great Bay. It has been shown that color indices and remotely determined concentrations of chlorophyll-a have the greatest contrast for remote observation of the manifestations of internal waves in the marine column. The optimal spectral range for satellite identification of the manifestation of internal waves is 440–500 nm. The obtained optical characteristics can be directly used to analyze the period of oscillations of internal waves and their automatic identification in satellite images. The position of the crests of the internal waves can be smeared or shifted, and for its estimation, as well as for estimating the amplitude, it is necessary to solve the inverse problem of remote sensing of the color of the sea, taking into account regional hydro-optical characteristics and the unstable stratification of optically active components in the sea mass, using data from hydro-physical modeling.
About the Authors
N. A. LipinskaiaRussian Federation
690041, Baltiyskaya Str., 43, Vladivostok
P. A. Salyuk
Russian Federation
690041, Baltiyskaya Str., 43, Vladivostok
690090, Sukhanova Str., 8, Vladivostok
References
1. Liu B., Yang H., Ding X., Li X. Tracking the internal waves in the South China Sea with environmental satellite sun glint images. Remote Sensing Letters. 2014, 5, 7, 609–618.
2. Dubina V.A., Mitnik L.M. Internal waves in the Sea of Japan: spatio-temporal distribution and characteristics according to satellite remote sensing data. Issledovanie Zemli iz Kosmosa 2007, 3, 37–46 (in Russian).
3. Liu A., Holbrook J., Apel J. Nonlinear Internal Wave Evolution in the Sulu Sea. Journal of Physical Oceanography. 1985, 15, 1613–1624.
4. Aleksanin A.I., Kim V. Automatic detection of internal waves on a satellite. Issledovanie Zemli iz Kosmosa. 2015, 1, 44–52 (in Russian).
5. Kim H., Son Y.B., Jeong J.-Y., Jo Y.-H. Hourly Observed Internal Waves by Geostationary Ocean Color Imagery in the East/Japan Sea. Journal of Atmospheric and Oceanic Technology. 2018, 35, 609–617.
6. Werdell P.J., McKinna L.I.W., Boss E., Ackleson S.G., Craig S.E., Gregg W.W., Lee Z., Maritorena S., Roesler C.S., Rousseaux C.S., Stramski D., Sullivan J.M., Twardowski M.S., Tzortziou M., Zhang X. An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing. Progress in Oceanography. 2018, 160, 186–212.
7. Su F.C., Ho C.R., Zheng Q., Kuo N.J. Estimating amplitudes of internal waves using satellite ocean colour imagery of the South China Sea. International Journal of Remote Sensing. 2008, 29, 21, 6373–6380.
8. Daniel T.L., Sung H.N., Steven D.M. Tracking oceanic nonlinear internal waves in the Indonesian seas from geostationary orbit. Remote Sensing of Environment. 2018, 208, 202–209.
9. Navrotsky V.V. Internal waves and fine structure in ocean. Doklady AN SSSR. 1976, 231:5, 1080–1083 (in Russian).
10. Lavrova O.Yu., Mityagina M.I., Sabinin K.D., Serebryany A.N. The study of hydrodynamic processes in the shelf zone based on satellite information and data from sub-satellite measurements. Sovremennye Problemy Distancionnogo Zondirovaniya Zemli iz Kosmosa. 2015, 12, 5, 98–129 (in Russian).
11. Mobley C.D. Fast light calculations for ocean ecosystem and inverse models. Optics Express. 2011, 19, 20, 18927–18944.
12. Bricaud A. et al. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models. Journal of Geophysical Research: Oceans. 1998, 103(C13), 31033–31044.
13. Morel A., Antoine D., Gentil B. Bidirectional reflectance of oceanic waters: Accounting for Raman emission and varying particle scattering phase function. Applied Optics. 2002, 41, 6289–6306.
14. Lee Z.P., Carder K.L., Peacoc T.G., Davis C.O., Mueller J.I. Method to derive ocean absorption coefficients from remote-sensing reflectance. Applied Optics. 1996, 35, 453–462.
15. Salyuk P.A., Stepochkin I.E., Krikun V.A., Pavlov A.N. Tuning of hyperspectral bio-optical algorithms in the Peter the Great Bay. Proceedings of SPIE — The International Society For Optical Engineering. 2010, 7857, 78570H-1–78570H-8.
16. Mobley C.D., Gentili B., Gordon H.R., Jin Z., Kattawar G.W., Morel A., Reinersman P., Stamnes K., Stavn R.H. Comparison of numerical models for computing underwater light fields. Applied Optics. 1993, 32, 36, 7484–7504.
17. Novotryasov V.V., Zakharkov S.P., Stepanov D.V. Internal tides in the coastal zone of the Sea of Japan in autumn. Russ. Meteorol. Hydrol. 2016, 41, 564–568.
18. Novotryasov V.V., Lyapidevsky V.Yu., Pavlova E.P., Khrapchenkov F.F. Internal waves and mixing in the shelf zone of the sea. Izvestiya TINRO. 2010, 162, 324–337 (in Russian).
19. Morozov E.G., Pisarev S.V. Internal waves and wormwood formation in the Laptev Sea. Doklady’ RAS. 2004, 398, 2, 255–258 (in Russian).
20. Yaroshchuk I.O., Leontyev P., Kosheleva A.V., Samchenko A.N., Pivovarov A.A., Khrapchenkov F.F., Shvyrev A.N., Yaroshchuk E.I. Experimental studies of internal waves in the coastal zone of the Sea of Japan. Podvodniye Issledovaniya i Robototekhnika. 2013, 1 (15), 37–44 (in Russian).
21. The unified state system of information on the situation in the oceans. URL: http://esimo.oceanography.ru/tides/index.php?endsea=9&station1=5 (date of access: 02/20/2018) (in Russian).
22. Yaroshchuk I.O., Leontyev A.P., Kosheleva A.V., Pivovarov A.A., Samchenko A.N., Stepanov D.V., Shvyrev A.N. On intense internal waves in the coastal zone Peter the Great Bay (Sea of Japan). Meteorology and Hydrology. 2016, 9, 55–62 (in Russian).
23. Navrotsky V.V., Liapidevskii V.Yu., Pavlova E.P., Khrapchenkov F.F. Transformation and effects of internal waves in the nearshore region of sea. Journal of Oceanological Research. 2019, 47, 2, 230–245.
24. Kopelevich O.V., Burenkov V.I., Ershova S.V., Shebertsov S.V., Evdoshenko M.A. Application of SeaWiFS data for studying variability of bio-optical characteristics in the Barents, Black and Caspian seas. Deep-Sea Research II 51, 2004, 1063–1091.
25. Ryu J., Han H., Cho S. et al. Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS). Ocean Science Journal. 2012, 47, 223–233.
26. IOCCG (2012). Ocean-Colour Observations from a Geostationary Orbit. Antoine, D. (ed.), Reports of the International Ocean-Colour Coordinating Group, N12.
27. Kim H., Son Y.B., Jeong J.-Y., Jo Y.-H. Comparison of Internal Waves in Various Ocean Fields around the Korean Peninsula. Journal of Coastal Research. 2018, 85, 466–470.
28. Bilyunas M.V., Dotsenko S.F. Free internal waves in an inhomogeneous flow with a vertical velocity shift. Morskoy Gidrofizicheskiy Zhurnal. 2012, 1, 3–16 (in Russian).
29. Chassignet E.P., Hurlburt H.E., Metzger E.J., Smedstad O.M., Cummings J., Halliwell G.R., Bleck R., Baraille R., Wallcraft A.J., Lozano C. US GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model (HYCOM). Oceanography. 2009, 22, 64–75.
30. Madec G., and the NEMO team. NEMO ocean engine. Note du Pole de modelisation. Institut Pierre-Simon Laplace (IPSL). 2008, France, 27, 1288–1619.
Review
For citations:
Lipinskaia N.A., Salyuk P.A. Research of the influence of internal waves on the optical characteristics of the sea surface in the shelf zone of Peter the Great Bay. Fundamental and Applied Hydrophysics. 2020;13(2):51-59. (In Russ.) https://doi.org/10.7868/S2073667320020069