THE RELATIONSHIP OF THE SPATIAL STRUCTURE OF THE TOTAL SUSPENDED MATTER CONCENTRATION AND HYDROLOGICAL PARAMETERS IN THE NORTHERN BLACK SEA ACCORDING TO CONTACT MEASUREMENTS

Received 14.01.2022, Revised 20.04.2022, Accepted 26.04.2022

Abstract
Here we describe the features of the horizontal and vertical distribution of total suspended matter in the northern part of the Black Sea and their relationships with the water temperature, salinity, and density fields measured at the identical grid during hydro-optical surveys from 2016 to 2020. The results show that the primary sources of increased total suspended matter concentrations in the northern part of the Black Sea are low-salinity and turbid waters of the Kerch Strait; runoffs of the Rioni, Enguri, and other rivers in the east of the survey area; together with freshened waters of the Dnieper, Dniester, and Danube runoff from the northwestern shelf. Higher turbidity was observed in the deep-water part of the sea, associated with the cyclonic gyres and meanders of the Rim Current effects. The total suspended matter vertical structure features an upper mixed layer, which usually coincides in thickness with the upper thermohaline upper mixed layer. Significant negative correlations were found for this layer comparing total suspended matter concentration versus temperature and salinity, while the correlation appears positive with density values. Below, a total suspended matter subsurface maximum was observed in the seasonal thermocline and pycnocline layer. The high turbidity layer appeared almost an order of magnitude thinner in the regions of maximum temperature gradients versus the areas where the temperature gradient was weak. A local total suspended matter minimum occurred below the cold intermediate core, corresponding to the main thermocline, halocline, and pycnocline layer. Beneath this minimum, there was a local increase of total suspended matter coinciding with the upper boundary of the hydrogen sulfide zone.

Keywords: total suspended matter, Black Sea, Rim Current, water temperature, salinity, density, circulation, upper mixed layer, thermocline, pycnocline, halocline

© A. A. Latushkin, Yu. V. Artamonov*, E. A. Skripaleva, A. V. Fedirko, 2022
© Translation from Russian: Е. С. Kochetkova, 2022

Marine Hydrophysical Institute, Russian Academy of Sciences, 299011, Kapitanskaya Str., 2, Sevastopol, Russia
*E-mail: artam-ant@yandex.ru

СВЯЗЬ ПРОСТРАНСТВЕННОЙ СТРУКТУРЫ КОНЦЕНТРАЦИИ ОБЩЕГО ВЗВЕШЕННОГО ВЕЩЕСТВА И ГИДРОЛОГИЧЕСКИХ ПАРАМЕТРОВ В СЕВЕРНОЙ ЧАСТИ ЧЕРНОГО МОРЯ ПО ДАННЫМ КОНТАКТНЫХ ИЗМЕРЕНИЙ

Статья поступила в редакцию 14.01.2022, после доработки 20.04.2022, принята в печать 26.04.2022

Аннотация
По данным гидрооптических съемок, выполненных в северной части Черного моря по одной и той же сетке в период с 2016 по 2020 гг., уточнены особенности горизонтальной и вертикальной структуры поля общего взвешенного вещества и оценена их связь с распределениями полей температуры воды, солености и плотности. Показано, что основными источниками повышенной концентрации общего взвешенного вещества в поверхностном слое северной части Черного моря являются низкосоленые и мутные воды, поступающие из Керченского пролива, воды стоков Риони, Ингури и других рек на востоке акватории и распресненные воды Черного моря.

The relationship of the spatial structure of the total suspended matter concentration and hydrological parameters...

1. Introduction

The intensive development of the shelf, the rapid growth of coastal cities and resort facilities, and the massive coastal development lead to a significant increase in the anthropogenic impact on the Black Sea ecosystem [1–3]. Along with river runoff, various industrial, agricultural, and domestic pollutants enter the sea. In this regard, the relevance of assessing the ecological state of the Black Sea waters, which is reflected in their hydro-optical structure, increases. The suspended matter has a significant effect on the formation of the latter [4–6], the indicator of the content of which is the light beam attenuation coefficient (BAC) [7–12].

At present, four main layers are distinguished in the vertical distribution of BAC in the deep part of the sea: surface, intermediate, boundary, and deep [7, 12]. The surface layer occupies the photic zone of the sea. Its lower boundary varies within 40–70 m on average. In summer, the surface layer is characterized by several BAC maxima, with the strongest maxima observed in the seasonal thermocline and in the upper part of the main halocline [7]. In the shelf part of the sea, in the vertical distribution, there is usually one BAC maximum [12]. In winter in the deep regions, only one BAC maximum persists in the vertical distribution due to the absence of a seasonal thermocline. In the shelf zone, the BAC distribution is vertically homogeneous [7, 12].

The intermediate layer is located at about 50–150 m and is highly transparent. Its thickness in summer does not exceed 30 m; in winter, it can increase up to 80 m. High transparency is associated with the absence of organic matter accumulation conditions [7, 12]. Below lies the region of the oxygen zone transition into the hydrogen sulfide zone (suboxic redox zone [13]). Here, elevated turbidity is associated with a high content of suspended particles, including 93% of inorganic and 7% of organic particles [7, 14–18]. In the deep layer that starts at the upper boundary of the hydrogen sulfide zone, BAC increases monotonically with depth in the short-wave(violet) region of the spectrum, while the long-wave BAC remains constant vertically [14–20]. A possible explanation is given in [20]. Absorption by yellow matter, a part of organic compounds, is intense in the short-wave part of the spectrum and decreases sharply with the wavelength increase. Thus, it has a negligible effect on BAC in the long-wave part of the spectrum.

Studies of the horizontal distribution of transparency features showed that the most turbid waters appear in the surface layer on the northwestern shelf, which is associated with intense river runoff [7, 9–12, 21, 22]. Horizontal fields of hydro-optical parameters presented synoptic variability in the form of alternating areas of more transparent and relatively turbid waters, while the scale of synoptic formations was 10–100 km [12, 22].

Until recently, the general understanding of the Black Sea hydro-optical structure variability, especially in its deep-water part, is based on episodic measurements in different regions, seasons, and years, which makes it difficult to identify patterns of variability of hydro-optical fields on various spatiotemporal scales. In addition, to interpret the distributions of hydro-optical parameters, quasi-synchronous measurements of thermohaline characteristics and instrumental measurements of currents are required. Such
measurements have been regularly carried out since 2016 in the northern part of the Black Sea on the R/V Professor Vodyanitsky. Some results of these studies for individual surveys are reflected in [23–28]. In this paper, based on the generalization of all measurements performed from 2016 to 2020, we analyze the relationship between the spatial structure of the concentration of total suspended matter (TSM) with the distributions of hydrological parameters and water circulation. Note that in this study, the concentration of TSM refers to the concentration of all suspended particles that remain on the filter when using one or another filtration method.

2. Materials and methods

Hydro-optical and hydrological studies were carried out on the R/V Professor Vodyanitsky following the same scheme of stations in the northern part of the Black Sea from Cape Tarkhankut to the border with Abkhazia. From 2016 to 2020, ten large-scale surveys were carried out in different seasons (Table 1). It should be noted that unfavorable weather conditions and the closure of some areas for work did not always make it possible to complete surveys according to the planned scheme.

For hydro-optical measurements, the attenuation coefficient of directional light was measured with a SIPO4 spectral sounder [29], developed in the Department of Optics and Biophysics of the Sea, MHI RAS. BAC was measured in the red region of the spectrum at 625 nm with a vertical resolution of 0.1 m from the surface to the maximum measurement depth. The maximum depth varied from 50 to 200 m on different cruises, depending on the time and weather conditions of the hydro-optical measurements. We calculated TSM concentrations using the empirical ratio TSM = 1.514 × BAC(625) — 0.23, obtained earlier for the northern part of the Black Sea based on the data sets of BAC measurements and determination of the TSM concentration by the gravimetric method, collected at the same stations [28]. Hydrological parameters were measured by the Sea-Bird 911 plus CTD sounding complex; the speed and direction of the currents were measured by the ADCP WORK-HORSE-300 kHz current profiler.

To assess the connection of the TSM spatial distributions to thermohaline parameters and their change with depth, we calculated the linear correlation coefficients of TSM versus temperature, salinity, and density for all stations with a vertical step of 1 meter. In addition, we determined a linear correlation between depths of TSM maxima and various thermohaline isosurfaces: the lower boundary of the upper mixed layer, the transition layer, the cold intermediate layer, the boundaries of the redox zone, the upper boundary of the hydrogen sulfide zone, determined by the position of the isopycnal at 16.2 cond. units.

3. Results

An analysis of the TSM horizontal distributions in the surface layer revealed general patterns related to the hydrological structure peculiarities. Within the polygons, there are several areas with TSM extreme values, the appearance of which is associated with the centers of various water masses formation. On majority

<table>
<thead>
<tr>
<th>Cruise, No</th>
<th>Date</th>
<th>Number of stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>87</td>
<td>30.06–20.07.2016</td>
<td>106</td>
</tr>
<tr>
<td>89</td>
<td>16.11–05.12.2016</td>
<td>112</td>
</tr>
<tr>
<td>94</td>
<td>22.04–06.05.2017</td>
<td>104</td>
</tr>
<tr>
<td>95</td>
<td>14.06–04.07.2017</td>
<td>113</td>
</tr>
<tr>
<td>98</td>
<td>14.11–28.11.2017</td>
<td>90</td>
</tr>
<tr>
<td>101</td>
<td>14–27.12.2017</td>
<td>62</td>
</tr>
<tr>
<td>102</td>
<td>09.06–01.07.2018</td>
<td>122</td>
</tr>
<tr>
<td>103</td>
<td>28.08–20.09.2018</td>
<td>147</td>
</tr>
<tr>
<td>106</td>
<td>18.04–13.05.2019</td>
<td>142</td>
</tr>
<tr>
<td>115</td>
<td>27.11–16.12.2020</td>
<td>76</td>
</tr>
</tbody>
</table>

Total number of stations with BAC measurements 1102
The relationship of the spatial structure of the total suspended matter concentration and hydrological parameters...
In the northwestern part of the polygons, during spring-summer cruises, one more area of increased TSM values was registered (Fig. 1; Fig. 4, a). In this area, as a rule, waters of low salinity were observed, which penetrated the survey area from the northwestern shelf (Fig. 1; Fig. 4, a). Shelf waters are characterized by maximum turbidity and minimum salinity due to the runoff of Dnieper, Southern Bug, Dniester, and Danube rivers [7, 9–12, 21, 22].

In addition to the above areas of high TSM concentrations, in the deep part of the polygon, local areas of turbid waters can be traced. Apparently, the existence of these regions is not associated with river runoff or advection of coastal waters into the open sea. The occurrence of such areas can be explained by vertical circulation peculiarities in the cyclonic gyres and meanders. So, for example, according to the summer and
autumn surveys in 2018, in the southern part of the polygons, areas of high TSM values were observed located on the peripheries of cyclonic meanders (Figs. 2, 3). In contrast to coastal waters with high turbidity and low salinity, waters with high TSM concentrations in the zones of these meanders were characterized by an increase in surface salinity above 18.15 ‰ in summer and 18.25 ‰ in autumn (Fig. 2, 3). This increase in turbidity and salinity is associated with the rise of more saline subsurface waters and a subsurface maximum of TSM concentration, which leads to elevated TSM and salinity near the surface. TSM maximum depth distribution varied from shallow 5–10 m in the regions of high surface TSM to deepened 15–25 m in the surrounding waters [25].

In general, according to the data of all cruises in the deep-waters, the TSM concentration decreased with distance from the coastal sources of turbid waters, while salinity, as a rule, increased (Fig. 4).

4. Discussion

Quasi-synchronous measurements of the TSM concentration and hydrological parameters during surveys provided data for some statistical estimates of the identified features of a relationship between the spatial structure of hydrological fields and the TSM field on the surface and for analysis of the variability of this relationship with depth. An analysis of the horizontal distributions of the TSM concentrations and thermohaline parameters, as well as the linear relationship coefficients between these distributions with the increments of 1 m in depth, showed that within the upper upper mixed layer (UML) there was significant negative linear correlation between the values of the TSM versus temperature and salinity at each horizon. The correlation between TSM and density was positive [23, 26]. Thus, colder and less saline waters tended to have increased turbidity due to the intense growth of organisms in colder waters, confined mainly to the open parts of the sea and upwellings. In less saline waters, an increase in TSM concentration occurred predominantly in coastal areas, where there is a significant input of river runoff enriched with particulate matter of terrigenous origin.

The UML thickness in the TSM field significantly depended on the season (Fig. 5, a) and, as a rule, coincided with the UML thickness in the fields of thermohaline parameters (Fig. 5, b, d, f). From late autumn to spring, a well-developed UML with a thickness of up to 50 m was observed; in summer and early autumn, the UML thickness did not exceed 5–10 m. Deeper than the UML, a subsurface maximum of TSM concentration was traced, most prominent in summer and autumn (Fig. 5, a). The depth of this maximum was 10–13 m in summer, increased to 18–22 m in early autumn, and up to 25 m at the end of autumn. The distributions of vertical gradients of temperature (TVG), salinity (SVG), and density (σV) (Fig. 5, c, e, g) showed that the depth of the subsurface maximum of TSM concentration coincided well with the depth
of the maximum values (in absolute value) of vertical temperature and density gradients (Fig. 5, a, c, g).
In general, a strong linear relationship exists between the depths of the TSM subsurface maxima and the maxima of the TVG and σ_{VG} in the summer-autumn season (Table 2). In addition, it was found that the thickness of the subsurface layer with high TSM concentrations, more than 1.5 times higher than the TSM values in the overlying and underlying layers, depends on the absolute value of the vertical temperature gradient. In areas of TSM maxima, the layer thickness with a high content of total suspended matter decreased by almost an order of magnitude compared to areas where the temperature gradient was weak. A significant linear correlation was obtained for the thickness of the layer with the maximum TSM concentration and the value of the maximum TVG (Fig. 6).

During winter and spring cruises, the vertical stratification of the TSM concentration in the upper 60-m layer was weak, and the subsurface maximum was practically undetectable. Directly in the surface layer up to 5 m thick, weak extrema of different signs were observed in the TSM structure, which resulted from the influence of synoptic atmospheric processes on the redistribution of surface waters with different TSM concentrations (Fig. 5, a).

Below the subsurface maximum, the TSM concentration gradually decreased (Fig. 7, a). The cruises’ results show an intermediate TSM minimum within a 75–120 m layer, and its depth varies from 75–95 m in late autumn, winter and spring to 100–117 m in summer and early autumn. The vertical temperature distribution (Fig. 7, b) shows that this TSM minimum laid below the depth of the temperature minimum (the core

![Fig. 5. Vertical profiles of TSM concentration (a), temperature (b) and TVG (c), salinity (d) and SVG (e), density σ_t (f) and σ_{tVG} (g) in the 0–60 m layer, averaged over all stations for each survey](image-url)
The relationship of the spatial structure of the total suspended matter concentration and hydrological parameters...

Table 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>R(H</td>
<td>TSM</td>
<td>max — TVGmax)</td>
<td>0.32</td>
<td>0.94</td>
</tr>
<tr>
<td>R(H</td>
<td>TSM</td>
<td>max — σtVGmax)</td>
<td>0.35</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Fig. 6. Correlation between the thickness of the subsurface layer with high TSM concentrations and the value of the maximum temperature vertical gradient according to the data of the summer 2016 survey. Dashed lines are the boundaries of the 95% confidence interval.

...of the cold intermediate layer (CIL), which occurred on 70–90 m, and was located in the layer of the main thermocline, halocline, and pycnocline (Fig. 7, b–d). In general, a significant linear relationship was found between the depths of the CIL core and the intermediate TSM minimum (Fig. 7, e).

Below the intermediate minimum, the TSM concentration increased again. And at depths beneath 100–120 m, several relatively weak TSM extrema were recorded on the vertical profiles averaged over all stations (Fig. 7, a). An analysis of the vertical structure of the density field showed that the greatest increase in the content of suspended matter is observed in the layer of isopycnal surfaces 16.15–16.35 cond. units. According to [13], this layer covers the lower boundary of the suboxygen redox zone and the upper layer of the hydrogen sulfide zone, the upper boundary of which is here determined by the position of the isopycnal 16.2 cond. units. The most intense deep maximum of the TSM concentration was well traced during the autumn survey in 2017. On the averaged TSM profile, this maximum was located approximately at a depth of 170 m (Fig. 7, a; Fig. 8, a), which corresponded to an isopycnal surface of 16.3 cond. units (Fig. 8, b), i.e., according to [13], was in the upper part of the hydrogen sulfide zone. An analysis of the depth of occurrence of TSM maximum at each individual station showed that across the survey area it varied in a wide range from 100 to 170 m. The consistency estimates of the spatial distribution of the TSM maxima depths and various isopycnal surfaces with increments of 0.1 cond. unit, corresponding to the suboxygen redox zone (15.5–16.15 cond. units) (Fig. 8, c) and the hydrogen sulfide zone (16.2–16.6 cond. units) (Fig. 8, d–f) showed that the maximum correlation reaching R ~ 0.936 is observed for the isopycnal depth of 16.3 cond. units. In general, a high level of consistency in the distribution of the layer of isopycnal surfaces of 16–16.4 cond. units with R values exceeding 0.9 (Fig. 8, g) was observed.

5. Conclusion

Detailed hydro-optical surveys with high spatial resolution, performed on the same grid, provided data to clarify the features of horizontal and vertical structures of hydro-optical fields and evaluate their relationship with hydrological characteristics.
Fig. 7. Vertical profiles of TSM concentration (a), temperature (b), salinity (c) and density (d) in the 60–200 m layer, averaged over all stations for each survey, and the correlation between the depths of the CIL core and C_{TSM} intermediate minimum (e) according to the data of the winter 2017 survey. The horizontal lines mark the depth of the TSM minimum. Dashed lines are the boundaries of the 95% confidence interval.
The relationship of the spatial structure of the total suspended matter concentration and hydrological parameters...

It is shown that the sources of increased concentration of total suspended matter in the surface layer of the northern part of the Black Sea are low-salinity and turbid waters coming from the Kerch Strait; the waters of the Rioni, Enguri, and other rivers in the east of the study region; and the freshened waters of the Dnieper, Dniester and Danube penetrating survey area from the northwestern shelf.

In the deep part of the survey areas, local patches of turbid waters can occur, associated with the peculiarities of vertical circulation in the cyclonic gyres and meanders of the Rim Current. Unlike coastal waters with increased turbidity and low salinity, waters with increased TSM concentration in the zones of these meanders were characterized by high surface salinity.
It was found that within the upper mixed layer, at each horizon, a significant negative linear correlation was observed between the TSM values and temperature, TSM and salinity, and a positive correlation between the values of TSM and density, i.e. colder and less saline, as well as denser waters were characterized by increased turbidity.

It is shown that the thickness of the UML in the TSM field, as a rule, coincided with the thickness of the UML of thermohaline parameters. Deeper than the UML, the main TSM maximum was registered, most prominent in summer and autumn. The depth of TSM maximum coincided with the depth of the maximum values (in absolute value) of the vertical gradients of temperature and density. The thickness of the subsurface layer with high TSM concentrations, more than 1.5 times higher than the TSM values in the overlying and underlying layers, was linked to the absolute value of the vertical temperature gradient. In areas where the TSM maximum was observed, the thickness of the layer with a high content of total suspended matter decreased by almost an order of magnitude compared to areas where the temperature gradient was weak.

Below the depth of the cold intermediate layer core, in the layer of the main thermocline, halocline, and pycnocline, an intermediate TSM minimum was registered. Beneath the intermediate minimum, the concentration of TSM increased again. At depths below 120–130 m one more TSM maximum occurred, located in the upper layer of the hydrogen sulfide zone. The spatial distribution of the depth of occurrence of this maximum is most clearly consistent with the distribution of the depth of the isopycnal 16.3 cond. units.

6. Acknowledgments

The authors express their deep gratitude for valuable methodological advice during the discussion of the article to the senior research scientist of the Department of remote research methods, FSBSI FRC MHI, A.N. Morozov.

7. Funding

The work was carried out within the framework of the FSBSI FRC MHI State Orders No. 0555-2021-0003 (Operational oceanology) and № 0555-2021-0004 (Oceanological processes).

References

134
Связь пространственной структуры концентрации общего взвешенного вещества и гидрологических параметров...

The relationship of the spatial structure of the total suspended matter concentration and hydrological parameters...

Литература

2. Иванов В.А., Катунин Е.В., Соева Е.Е. Оценки антропогенных воздействий на экосистему акватории Георгиевского полуострова в районе расположения глубинных стоков // Процессы в геосредах. 2016. Т. 1, № 5. С. 62–68.

136

Latushkin A.A., Artamonov Yu.V., Skripaleva E.A., Fedirko A.V.
Latushkin A.A., Artamonov Yu.V., Skripaleva E.A., Fedirko A.V.

doi:10.1007/978-3-642-77722-6

10. Кукушкин А.С., Агафонов Е.А., Прохоренко Ю.А. Распределение показателя ослабления направленного света в поверхностных прибрежных водах Черного моря // Мorskой гидрофизический журнал. 2006. № 5. С. 30–43.

12. Маньковский В.И. Оптические характеристики прибрежных вод Черноморского побережья Украины // Экологическая безопасность прибрежных и шельфовых зон и комплексное использование ресурсов шельфа. 1999. С. 149–152

17. Сорок Е.Е., Маньковский В.И., Прохоренко Ю.А., Чепурнова Э.А. Природа глубинного мутного слоя в Черном море // Доклады Академии наук Украинской ССР. Серия Б. Геологические, химические и биологические науки. 1987. № 6. С. 32.

20. Маньковский В.И. Особенности вертикального распределения показателя ослабления излучения в коротковолновом и длинноволновом участках спектра в глубинных слоях сероводородной зоны и в придонном слое Черного моря // Морской гидрофизический журнал. 2003. № 3. С. 63–67.

The relationship of the spatial structure of the total suspended matter concentration and hydrological parameters...

