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Акустические допплеровские профилографы течений широко используются для построения вертикальных про-
филей скорости. В последние годы эти приборы применяются также для оценок скорости ε диссипации энергии, на 
основе анализа продольных структурных функций. Применимость этих оценок, однако, остается спорной, поскольку 
расчет осуществляется в рамках предположения о локальной однородности и изотропности мелкомасштабных пуль-
саций и с использованием канонических значений констант Колмогорова. Однако во многих случаях, как показывают 
экспериментальные исследования и прямые численные расчеты, эти константы существенно варьируются, что при-
водит к ошибкам в определении ε, которые могут превышать 50 %. В данной работе представлен метод, позволяющий 
произвести оценку параметров анизотропии непосредственно по анализу всех лучевых компонент скорости. Его суть 
заключается в использовании обобщенных (4-точечных) структурных функций и учете межлучевых корреляций ско-
рости. Получено, в частности, явное выражение для поперечной структурной функции, что позволяет осуществить 
непосредственную проверку «закона 4/3». Апробация метода осуществлена на основе обработки данных, полученных 
при изучении турбулентности в конвективно-перемешанном слое покрытых льдом озер (Онежское и Вендюрское).

Ключевые слова: Акустические допплеровские профилографы течений, мелкомасштабная структура турбулентности, 
структурные функции, константы Колмогорова.
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Acoustic Doppler Current Profilers (ADCP) are widely used for deriving velocity vertical profiles. In recent years these devic-
es were also actively explored for estimations of the energy dissipation rate ε by studying longitudinal velocity structure functions 
(SF). However, these estimates remain questionable because the correspondent SF method is based on the assumption of the 
fine-scale isotropy and explores the canonical values for Kolmogorov constants. The last ones, as recent direct measurements and 
numerical computations prove, are highly variable, thus triggering the errors of ε estimations, which may exceed 50 %. This paper 
presents an approach to derive the retained information, hidden in the raw along-beam velocities data, which can shed a light on 
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the anisotropy parameters. For this, we developed the inter-beam correlations method, based on the analysis of generalized (four-
point) SF. The explicit expression for transverse SF was derived, which made it possible to check the “4/3 law” directly. The meth-
od was tested by processing velocity data, obtained from the convective mixing layer in ice-covered lakes Onega and Vendyurskoe.

Key words: Acoustic current profilers, turbulence fine-scale structure, structure functions, Kolmogorov constants.

1. Introduction

Acoustic Doppler current profilers (ADCPs) are widely used in oceanological and limnological studies. The nu-
merous studies [1–4] had proven that under the assumption of horizontal homogeneity these devices constitute the 
powerful tool for mean flow vertical profiling, after the proper averaging. In recent years the progress was achieved 
also in processing the retained raw along-beam velocities b, including fine-scale turbulence parameters. In particu-
lar, the structure-function method SFM [5–7] and spectral inertial-dissipative method IDM [8] based on applying 
Taylor’s hypothesis were developed for energy dissipation rate ε estimations.

Concerning the large-scale turbulence parameters, for the case of 4-beam ADCP (“Janus” configuration) the 
variance method was developed [9–11] and validated by estimating some components of the Reynolds stress tensor. 
Thus, estimates of both production and dissipation rates become available, inspiring further detailed studies of the 
turbulent kinetic energy balance.

On the other hand, the device applicability to turbulence studies remains restricted, and operation procedures 
are challenging. In particular, the problems of noise exclusion and the averaging algorithms [12, 13] still remain 
challenging. Another problem consists in development of appropriate data processing methods taking into account 
the dynamics of natural turbulent flows as well as mounting requirements for practical applications. In particular, 
more information on fine-scale structure and energy-containing pulsations is necessary for detailed studies of the 
turbulent energy balance and for estimating parameters of turbulent heat and mass transfer. The currently available 
ADCP operation procedures derive this information only partially. For example, in large-scale studies the above-
mentioned variance method provides estimations of only two turbulence stress components; the derivation of all 
six components of Reynolds stress tensor is not accessible even with “Janus+” configuration of five-beam ADCP 
[14]. The fine-scale ADCP studies also face the problems, which, being in the focus of this paper, are discussed 
below in more details.

The crucial restriction of the IDM method is its inability to split along-flow and cross-flow velocity spectra. 
Herewith, the corresponding spectral constant remains undetermined, varying within the interval of at least (1, 4/3), 
even in conditions of local isotropy. As a result, the spectral fitting leads to an uncertainty for the dissipation rate 
estimation up to a factor of (4/3)–3/2 ≈ 0.65 [8].

In turn, the performance of the SFM with regard to estimation of the energy dissipation rate e is also sensi-
tive to the local isotropy assumption. Namely, only longitudinal (along-beam) structural functions DLL(AA′) =	
=<(b(A′) — b(A))2> are available from the direct measurements of the beam velocities b at points A and A’. The cor-
responding estimations of e are based on the exploring the dependence of DLL on distance AA′ (2/3 power law) in the 
inertial interval. The implementation of this procedure suggests fine-scale isotropy and, correspondingly, the use of 
canonical values for Kolmogorov constants. Both the validity of this assumption and, correspondently, the universal-
ity of the constants remain questionable. In different turbulence flows essential fine-scale anisotropy was revealed in 
numerical simulations [15], as well as experimentally [5, 7]. At that, deviations of Kolmogorov constants from their 
canonical (“isotropic”) values may lead to the errors in dissipation rate estimations exceeding 50 %, as was proven, 
for instance, by direct numerical simulations of the boundary layer [16]. Such uncertainty with dissipation rate es-
timations are especially crucial for the problem of mixing efficiency, where the ratio of conversion of mechanical 
energy to background potential one is the key issue [17].

In more general context, fine-scale anisotropy and its relationship with scaling, intermittency, and spectral ener-
gy transfer remain fundamental challenges in the theory of turbulence [18]. In particular, some studies [19, 20] clearly 
demonstrate the necessity of distinguishing between the so-called directional (connected with different orientations 
of two-point separation vector) and polarization anisotropy of SF. These subtle features provide a deeper insight into 
the 2D‑3D interplay (and corresponding k–3 and k–5/3 spectra) often observed in geophysical flows [21–23].

With regard to the turbulent energy cascade and its scaling, the importance of spectra angular dependence was 
stressed in [24]. For stratified turbulence the exact values of scaling exponents, which identify the physical back-
ground of the energy cascade, are still challenging (e. g., Kolmogorov’s 2/3 vs Bolgiano-Obukhov 6/5) [25]. Besides, 
a departure of high-order SF exponents from the Kolmogorov law (2p/3 for p-th order SF) was observed in [18], thus 
clearly indicating the intermittent nature of pulsations. For accurate estimations of the dissipation rate e, the splitting 
up of this quantity on wave and vortex modes, as well as, horizontal and vertical parts is necessary in the general case 
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[26]. Most of the mentioned results and descriptors are still far above the experimental abilities. So, there are obvious 
gaps between recent advances in the theory of turbulence and rather restricted set of anisotropy descriptors, tradition-
ally used by the engineering and geophysical turbulence communities.

Here, we address only the traditional Kolmogorov scaling, using the classical descriptors for anisotropy estima-
tions: longitudinal and transverse SFs. Even this reduced version of the anisotropy problem statement is not directly 
applicable to ADCP measurements, because the transverse SF is not available from ADCP data. To overcome the 
problem, we attempted to derive the missing information from raw data, taking into account the correlation between 
the signals from different beams.

It should be noted that the idea to incorporate the information from all beams has been actively explored before. 
In particular, estimations of Reynolds stresses were successfully derived from the variances of opposite beams re-
cords for 4-beam ADCP by [9–11]. Other studies actively used the full set of data (from all beams) to improve data 
processing. For example, the so-called error velocity (proportional to the difference between records of pairs of op-
posite beams) may be used as the indicator for checking the validity of the horizontal homogeneity assumption [27]. 
Combining the data from all beams is often used for reducing the error of energy dissipation estimations, especially 
for shear flows, when the values of ε, derived from different beams data, differ significantly due to the large-scale 
anisotropy [5]. Here the simplest method consists of averaging the estimates obtained from different beams. A more 
sophisticated technique is based on the applying SF method to a composite variable similar to the error velocity [6].

It is important to note that in all mentioned examples the exploring of full (from all beams) velocity set is im-
plemented under the assumption that the beam velocities are independent, and corresponding correlations may be 
neglected. The new method, presented in this paper, on the contrary, is based on taking these correlations into ac-
count. In fact, some ADCP processing in limnological [7] and marine [6] environment indirectly prove the non-zero 
covariance between velocity increments for different beams. In low-energetic environments, like small lakes, the 
revealed inertial interval has the extension of up to 1 m, commensurable with the distance between beams for rather 
wide depth interval. Supposedly the ADCP cross-beam correlations are not vanishing also in oceanic environment, 
where the scales of energy-containing structures, and, correspondently the integral scale rc of turbulence, may exceed 
hundreds of meters.

The essence of the method is presented in the next section. Its technical aspects are based on studying the gener-
alized (four-point) structure functions. The core method is designed for deeper insight into both fine- and large-scale 
structure of turbulence, but we concentrated first on its application to the fine-scale anisotropy. In particular, special 
attention is paid to the relationship between Kolmogorov constants.

2. Velocity structure function approach and turbulence isotropy

For certainty, the method is presented below for the 3-beam version of ADCP. We assume also the configuration, 
when the beams are equally spaced azimuthally and oriented at the angle a0 off the vertical axis; a0 = 25° in standard 
modifications. For such type of the device the angle 2a = ∠AOB between the adjacent beams (fig. 1) is determined by 

0
3sin sin 0.366.
2

a = a ≈

The beam projection of the velocity is measured in a series of points along each beam, with typical cell spacing 
about few centimeters. For the energy dissipation rate e in the range 10–9 –10–6 W/kg, the Kolmogorov dissipative 
scale rd varies from few millimeters to few centimeters. Hence, the cell spacing is usually slightly above rd, or may 
be adjusted where is necessary. It means that the velocity correlations within the inertial interval in the wavelength 
domain (which constitute the essence of SFM) are available.

SFM for e estimations is based on the estimation of the difference of the components of the velocity fluctuations 
u
  in some adjacent points. The matrix of the simplest (second order) SFs for two points with coordinates x

  and 
x r+
   is defined as:

	 ( , ) ( ( ) ( ))( ( ) ( )) .ij i i j jD x r u x r u x u x r u x=< + − + − >
            	 (1)

The angle brackets are used for averaged (temporal mean) quantities. Hereinafter, first point with coordinates x
  

is used as reference one.
For locally homogeneous and isotropic turbulence any element of the matrix is directly expressed through the 

two scalar products: the so-called longitudinal (DLL) and transverse (DNN) structure functions [28]:

	 2( ) ( ( ) ( )) ( ) .i j
ij LL NN NN ij

r r
D r D r D r D r

r
= − + d

 	 (2)



89

Метод оценки параметров анизотропии мелкомасштабной турбулентности по данным акустических профилографов

Here | |r r=
 . Longitudinal structure function describes correlations be-

tween the components Lu of the velocity fluctuations aligned with r , while 

DNN gives the correlations of the increments of the perpendicular compo-
nents.

Within the inertial interval both scalar SF obey the simple relationships

	 2/3 2/3 4( ) ; .
3LL NN LLD r C r D D= ε = 	 (3)

Here C is the Kolmogorov constant; for fully developed turbulence its 
value is close to 2.1 [16, 29]. The second equation (3) is usually treated as 
the “4/3 law” and usually is regarded as one of the direct criteria for check-
ing of the local isotropy.

The raw ADCP data include only the velocity components aligned with 
the corresponded beams. This restriction provides, however, the ideal op-
portunity for longitudinal SF calculations, by choosing two points on the 
arbitrary beam, meaning for example points A and A´ on the beam 1 (fig. 1) 
and calculating, with proper averaging, the beam velocity variance:

	 DLL =<(bi(A′) — bi(A))2>.	 (4)

Here bi (i=1, 2, 3) is the i-th beam velocity fluctuation at the correspondent point.
After calculating DLL and taking the first equation (3) into account, the estimation of e becomes straightforward. 

But this procedure works properly only under the assumption of local homogeneity and isotropy. If this assumption is 
violated, the value of C in (3) may deviate sufficiently from the canonical value 2.1, as direct numerical calculations 
prove, e.g. [15, 16].

The violation of the assumption was revealed during experimental studies in marine and limnological environ-
ments by detecting the dependence of structure functions on the direction of the vector r

 . In particular, in most 
cases, the values of e, derived after data processing from different beams, differ sufficiently [6, 7]. To provide the best 
estimate for e, the values, obtained from different beams, are usually averaged, as described in Introduction. This 
formal smoothing procedure, ignoring the anisotropy effects, only obscures the problem and may lead to significant 
errors.

To obtain more reliable estimations of e, based on SFM, the anisotropy effects must be taken into account. The ratio 	
a = DNN / DLL is one of the direct indicators of anisotropy, and its deviations from 4/3 may serve as the anisotropy 
quantitative measure. Moreover, as shown in [15, 16], the parameter a strongly correlates with the values of Kolm-
ogorov constants. However, the methods of DNN estimations are underdeveloped. To overcome the problem, the 
generalized (four-point) structure functions may be involved, as presented in the next section.

3. Inter-beam velocity structure function: definition, derivation, and interpretation

The missing information on the fine-scale anisotropy may be potentially derived from inter-beam correlations. 
For this, generalized (four-point) structural functionsD  may be introduced, which describe the correlations between 
velocity increments for two pairs of points on different beams. For example, two pairs (A, A′) and (B, B′) on the beams 
1 and 2 (fig. 1) yield:

	 12 1 1 2 2( )( ) .A A B BD b b b b′ ′=< − − > 	 (5)

To avoid bulky calculations and to present the method idea more clearly, we chose the simplest geometrical 
configuration: points A and B are located at the same depth and AA′ = BB ′. The expressions derived below are easily 
extended on the general case.

The values of 12D  for different distances l = AB and r = AA′ are easily derived from experimental data, because 
beam velocities at all chosen points are measured directly. On the other hand, assuming local isotropy, these values 
are readily represented [28] through the values of ordinary structure functions with properly chosen arguments (the 
detailed calculations are moved to the Appendix):

	

12
12 (cos2 cos2 ) ( ) (1 cos2 )( ( ) ( ))
2

1(cos2 cos2 ) ( ) (1 cos2 )( ( ) ( )).
2

LL LL LL

NN NN NN

D D A B D AB D A B

D A B D AB D A B

′ ′ ′= a − b + − a + +

′ ′ ′+ a + b − + a +



	 (6)

Fig. 1. Geometric configuration and key 
angles of 3-beams ADCP.
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Here, a is determined by the device-dependent beam angle a0, as presented above; the value of the angle b =	
=∠ABA′ is determined from the equation sin b = (r/l)cos(a+b) (see Appendix).

Formula (6) links the values DNN with 12D  and DLL, the latter two directly available from experimental data. 
There are several ways for further application of Eq. (6) in anisotropy studies. First, one can treat this formula as the 
explicit expression, binding the values of transverse structural function with three different values of argument. In any 
case, this expression may be helpful for the direct DNN estimations. Second, assuming local isotropy relation 

4
3NN LLD D=  one can rewrite (7) as an alternative representation for longitudinal SF from Eq. (3):

	 1212 2(7cos2 cos2 ) ( ) (1 7cos2 )( ( ) ( )).LL LL LLD D A B D AB D A B′ ′ ′= a + b − + a + 	 (7)

Formula (7) gives the opportunity to check the local isotropy by negative proof method. The third implementa-
tion is similar to the previous, but looks more illustrative. Introducing parameter /NN LLa D D≡  for SF ratio (instead 
of prescribed 4/3), equation (7) is transformed to:

	
122 ((1 )cos2 (1 )cos2 ) ( )

((1 ) (1 )cos2 )( ( ) ( )) / 2,
LL

LL LL

D a a D A B
a a D AB D A B

′= + a − − b +
′ ′+ − − + a +



	 (8)

which makes it possible to calculate parameter a directly. Below we use (8) as the basic formula for checking the local 
isotropy, by comparing calculated value of the parameter a with the canonical value 4/3.

Implementation of Eq. (8) is not straightforward, because the right hand side of (8) includes the values of DLL for 
three different arguments (AB, A′B, A′B′) and two reference points (A and A′), increasing by this the noise level. Min-
imizing of the negative effect is possible by specific choice of the relative point orientation. For example, we may 

choose the point A′ in such a way, that A′B = A′B′. For this special configuration 2 ,
2cos2 1

l
A B′ ′b = a =

a −
 (see 

Appendix). As a result, Eq. (8) is reduced to:

	
122 ((1 ) / 2 (1 )(cos2 ) / 2 (1 )cos4 ) ( )

((1 ) (1 )cos2 ) ( ) / 2.
LL

LL

D a a a D A B
a a D AB

′ ′= − + + a − − a +
+ − − + a



	 (9)

Eq. (9) includes the values of DLL only for two arguments (AB and A′B′). The expression for a follows from (9) in 
a straight way:

	 124 (cos2 2cos4 1) ( ) (1 cos2 ) ( )
.

(cos2 2cos4 1) ( ) (1 cos2 ) ( )
LL LL

LL LL

D D A B D AB
a

D A B D AB
′ ′− a − a + − − a

=
′ ′a + a − − + a



	 (10)

Numerator and denominator on the right side of (10) are presented by linear combinations of longitudinal struc-
ture functions with arguments AB and A′B′. The corresponding coefficients depend only on angle a, whose value is, 
in turn, prescribed by the device beam angle a0.

The explicit relation (10) for the parameter a makes it possible to verify the “4/3 law”, which is traditionally 
viewed as the main necessary criterion for the local isotropy hypothesis applicability.

4. Application to field observations

We applied the abovementioned method, based on the inter-beams velocity correlations, to derive some addi-
tional information on turbulence structure of the convectively mixed layer, which develops in ice-covered lakes in 
spring as a result of inhomogeneous heating of water by solar radiation [3, 30].

The field experiments were carried out during the spring convection in the central deep-water part of Lake 
Vendyurskoe, Russia at 8–13 April 2016 and in Petrozavodsk Bay of Onega Lake at 12–20 March 2017. The 2 MHz 
HR Aquadopp Nortek profiler in the pulse-to-pulse coherent mode scanned roughly 2-m thick layer with the blind 
zone of the first 15 cm from the device head. The details of experimental setup are presented in [7, 23].

For both lakes we calculated DLL by averaging of the beam velocity increments for each beam and revealed the 
inertial interval which covered at least one decade of scales and extended up to the value Li ~ (0.5–0.7) m (fig. 2, see 
Inset). Due to the latter finding, the value of turbulence integral scale should be expected as 1 m and more. Herewith, 
the signals from points on different beams, separated by the distance less than ~1 m, cannot be regarded independent. 
Hence, the inter-beams velocity covariance is not vanishing, offering the opportunity to estimate the local anisotropy 
by the described method.

Taking this into account, we focused on estimation the parameter a. For this we used the expression (10), which 
corresponds to the reduced version of points configuration (A′B = A′B′ and β = 2α).
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a)	 b)

Fig. 3. Probability density function for anisotropy parameter a. a — Lake Vendyurskoe, 
b — Onega Lake. Dashed lines correspond to the classical value 4/3 of the parameter a.

Data processing included several preliminary steps. First, data was cleaned by simple filter dropping out the re-
cords deviating from the average burst velocity by the value exceeding 2.5 s (here s is standard deviation). Then each 
burst was averaged to get evenly time indexed dataset. To complete the preprocessing, the beam velocity fluctuations 
were calculated by subtraction of the 30-min moving average.

The proper choice of the reference points and the corresponding range of appropriate values of OA (along beam 
distance between ADCP and one of the upper reference points), is the most important feature for the method im-
plementation. Here we followed the criteria A′B′ < Li. Taking into account the formulas, which connect the values 
of segments A′B′ and AB, AB and OA (see Appendix), the arguments of DLL in (10) are expressed directly through 
the distance OA (along beam distance between ADCP and one of the upper reference points): A′B′ ≈ 2.15 AB; 	
AB ≈ 0.73 OA. At the same time, these estimates give the upper limit for OA: OA ≈ 0.64 A′B′ < 0.64 Li.

Fig. 3 presents the calculated values of a for the entire period of measurements and for all available along-beam 
distances OA, for both lakes. These values were averaged over all three pairs of beams; the negative values, as well as 
the values exceeding 3, were dropped. The calculations demonstrate the high level of the parameter a variations with 
time and depth. The histograms additionally illustrate that distribution of a is skewed. For both lakes the mean values 
of a exceed the canonical value 4/3: a = 1.77 ± 0.59 and a = 1.38 ± 0.35 for Onega Lake and Lake Vendyurskoe, 
respectively. This result is consistent with DNS findings, derived for boundary layer [16].

5. Discussion

Data processing from inter-beam correlations includes some subtle features. It should be stressed that implemen-
tation of the proposed method is crucially sensitive to the choice of ADCP settings. The cell size S and the extent L 
of the scanned area must be properly adjusted for each specific case. The value of S should be rather small for reliable 
estimations of SF and large enough compared with the dissipative scale rd. On the other hand, the method works, 
when the signals within the whole scanned area are correlated. Therefore, the length L should be chosen by taking 
into account the integral scale of turbulence or, more correctly, the extent Li of the inertial interval. In particular, the 
simple criteria L ≤ Li appears appropriate.

Another specific issue concerns the structure of the derived calculation formulas. For example, both (6) and (10) 
one can treat as the expressions, which directly connect the anisotropy descriptors (DNN and a correspondently) and the 
standard longitudinal SF. However, to estimate these descriptors, the values of DLL are necessary for different values of 
argument and, more important, for different reference points. This feature increases the error level, so that processing of 
noisy data becomes more sophisticated and imposes some limitations on the method’s scope of application. The problem 
of reducing the error level remains most challenging for the method application and is addressed for the future studies.
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Besides, the multiplicity of reference points in formulas involves additional restrictions: the slow spatial variations 
of the energy dissipation rate e (and, correspondently, DLL) must be taken into account for general (inhomogeneous) 
case, leading to the problem of splitting the anisotropy and inhomogeneity effects. In order to avoid the last problem, 
we tested the method by its application to the case of radiatively-driven convection, when convectively mixed layer is 
usually regarded as vertically homogeneous, and variations of e within this layer are relatively small [30].

In this study, the inter-beam correlation method was established and applied to the analysis of fine-scale anisotro-
py parameters. However, the scope of the method can be extended beyond these issues. In particular, the relationship 
between the generalized and ordinary structural functions may also be used to derive missing expressions for Reynolds 
stress components, after proper choice of the pairs of points. Namely, the expression (6) gives the explicit presentation 
for the corresponding stress for the case of reduced set of four points, with two of them coinciding. For example, the set 
of pairs (A, E) and (E, B) (fig. 4) is sufficient for calculating the Reynolds stress component <b1b2>. By this, the method 
provides the opportunity to study the fine- and large-scale anisotropy independently gaining a new insight into the prob-
lem of identifying the presumable “fingerprints” of energy-containing structures at smaller scales [16, 20, 31].

6. Conclusions

The advanced SF method, based on the use of the four-point correlation functions, gives the broader opportunities 
in analyzing the turbulence fine–scale structure by processing the ADCP data. In particular the inter-beam correlation 
method, established in this paper, makes it possible to derive the explicit expressions, which connect the values of longi-
tudinal and transverse SF with directly measured quantities. These expressions were used for checking the local isotropy 
assumption, and, in particular, the validity of the famous relationship DNN = (4/3) DLL. The data analysis revealed the 
significant spatial and time variability of the constant a. At that for both lakes its values exceed the canonical value 4/3. 
So, the estimations of the energy dissipation rate, derived from longitudinal SF, in most cases need to be corrected.

7. Funding

The study was carried out under state order to the Northern water problems Institute of Karelian Research Cen-
ter of RAS. GK was supported by the German Research Foundation (DFG Projects KI 853–13/1 and KI 853–16/1) 
and by the Sino-German Center for Research Support (CDZ Project GZ 1259).

Appendix. Representation for generalized structure function

To derive the relationship between the generalized structure function 12D  and the ordinary ones, we consider the 
plane, which include any two of three beams (for example, beam 1 and beam 2 on fig. 4). The orthogonal axes X and 
Y are introduced as presented by fig. 4.

The distances AA′, AB and the depth OE of the reference points A, B are denoted as r, l and h0, respectively. Then, 
the depth difference h, the lengths of segments A′B and A′B′, and the depth h0 are determined by the simple expressions:

0

cos ; 2 sin ;
cos ; ( ) / 2.

cos( )

h r A B l r

A B l h l ctg

′ ′= a = + a
a′ = = a

a + b

We also put into consideration the angle b ≡ ∠ABA′; the expression for this angle is derived directly by applying the 
sinus theorem:

sin ( / )cos( ).r lb = a + b .
For special configuration of points, when A′B = A′B′ and b = 2a, the expres-

sion for the lengths of both segments is reduced to .
2cos2 1

l
A B′ ′ =

a −
In the XY frame of reference the beam velocities are expressed as linear com-

binations of velocity components at the correspondent points: b1(A) = uX(A); 
b2(B) = uX(B)cos2a + uY(B)sin 2a, and similar expressions for points A´ and B´. 
Substituting these expressions into formula (6), we derive:

12 cos2 sin2 .XX XYD D D= a + a  

Here, both terms at right-hand side are presented by correlations of the incre-
ments of Сartesian components at two different pairs of points:

( ( ) ( ))( ( ) ( )) ,

( ( ) ( ))( ( ) ( )) .
XX X X X X

XY X X Y Y

D u A u A u B u B

D u A u A u B u B

′ ′=< − − >

′ ′=< − − >





Fig. 4. Four-point configuration for 
generalized structure function.



93

Метод оценки параметров анизотропии мелкомасштабной турбулентности по данным акустических профилографов

Both correlations are not available from the experiment, because at each point only beam component of the ve-
locity, rather than both Cartesian projections, are measured directly.

On the other hand, both generalized four-point functions XXD and XYD may be expressed through the ordinary 
SF by the following conversion formula [28]:

	 1 ( ( ) ( ) ( ) ( )).
2XX XX XX XX XXD D A B D AB D A B D AB′ ′ ′ ′= + − −

   

 	 (A1)

The similar expression is valid for the function .XYD
Each term on the right hand side of the last equation may be expressed through the longitudinal and transverse 

SF in a standard way, by using formula (5) and substituting

,A B′


 ,AB′


 A B′ ′


 and AB


 as r  in series.

The corresponding unit vectors are calculated directly:

( sin( ), cos( ))− a + b a + b  — for A B′


( sin( ), cos( ))− a − b a − b  — for AB′


( sin , cos )− a a — for AB


and A B′ ′


.

By taking into account these expressions for the direction cosines, for the terms in the right-hand side in formula 
(A1) the following representations are easily derived:

2

2

2

( ) ( ( ) ( ))sin ( );

( ) ( ( ) ( ))sin ( ) ( );

( ) ( ( ) ( ))sin ( ) ( ).

XX LL NN NN

XX LL NN NN

XX LL NN NN

D AB D AB D AB D AB

D A B D A B D A B D A B

D AB D AB D AB D AB

= − a +

′ ′ ′ ′= − a + b +

′ ′ ′ ′= − a − b +







The expression for ( )XXD A B′ ′


is the same as for ( ) :XXD AB


 only substituting AB by A′B′ is necessary.

The last set of formulas establishes the linear relationships between XXD and DLL, DNN, with simple trigonometric 

coefficients. The similar is true for .XYD

Finally, the expression for 12D takes the form:

	
12 1 2

3 4

2 ( ) ( ( ) ( ))
( ) ( ( ) ( )).
LL LL LL

NN NN NN

D c D A B c D AB D A B
c D A B c D AB D A B

′ ′ ′= + + +
′ ′ ′+ − +



	 (A2)

Here ci — trigonometric factors, defined by the relations:

1 2 3 4cos2 cos2 ; (1 cos2 ) / 2; cos2 cos2 ; (1 cos2 ) / 2.c c c c= a − b = − a = a + b = + a

When point A is close to B, and A′ — to B′, and, correspondingly, 0; / 2,a → b → π  the factors take the values 2, 

0, 0, 1 and formula (A2) is reduced to 12 ,LLD D=  as expected.

The last equation for 12D  is similar to formula (6) presented in the main text.
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a)	 b)

Fig. 2. The series of longitudinal velocity structure functions in the spatial domain:  
a — Lake Vendyurskoe, 10 April 2016, b — Lake Onega, 15 March 2017. Bold lines corre-

spond to r2/3 slope.
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