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O CIHEKTPAX COBCTBEHHBIX 3HAUEHUI
B MOJIEJIbHOM 3AJTAYE OITUCAHUS
OBPA3OBAHUSI KPYITHOMACIITABHBIX HTHTPY3UI B APKTUYECKOM BACCEHHE

Crarps noctynia B pegaknuto 29.11.2017, mocne mopabdorku 23.01.2018.

PaccunThIBaroTCSl CIEKTPBI COOCTBEHHBIX 3HAYEHHI B MOJEJIBHOW 3a]a4e MCCIIEIOBAaHHS HEYCTOHYMBOCTH TE€OCTPO-
(brueCcKOro TeueHus C IMHEHHBIM BEPTHKAJIBHBIM CJIBUTOM CKOPOCTH B O'PAaHUYEHHOM I10 BEPTHKAJIHU cjioe. B MozxensHOM
YPAaBHEHUU YYMTBHIBACTCS BIMSAHUE HA JUHAMMKY YCTOWYMBBIX U HEYCTOMYUBBIX BO3MYILEHUN TEUEHUS BEPTUKAIBHOMN
muddysnn iaByuecTr. 3aja4a CBOAUTCS K YUCICHHOMY PELICHUIO HECAMOCOIPSKEHHOTO IU(PepeHIMaIbHOrO ypaB-
HEHUS TPETHETO MOPSAJKA ¢ MaJIbIM [1aPAMETPOM IIPU CTApPLICH IPOU3BOIHON PU I'PAHUYHBIX YCIOBUAX, TUIIMYHBIX IS
okeaHa. Peuienue uinercs B BUJE CTENeHHOro psija. [lonck coOCTBEHHBIX 3HaYE€HHI NMPUBOIUT K MOUCKY KOPHEH Io-
JIMHOMA BBICOKOW CTereHu. [IpencTaBieHpl CIICKTPhI COOCTBCHHBIX 3HAUCHHN IS PA3JIMYHbBIX 3HAUCHHI Oe3pa3MEepHOTO
napameTpa 3ajaaud. Pe3ysibrarhl pacueToB COOCTBEHHBIX 3HAYEHHH CPaBHHUBAIOTCS C pe3ylIbTaTaMH, MOJy4YEHHBIMU ajlb-
TEpHATHUBHBIM METOJIOM PEIlIeHHs] SKBUBAJICHTHOH 3a1auu. OOpaiaercsi BHUMaHUE, 4TO PACCMOTPEHHast HEYCTOMYMBOCTh
TEUEHHUs SBJISIETCS OCLUWIISIIMOHHOM HEYCTOWYUBOCTBIO, KOTOPAsl KapAUHAJIBHO OTJIMYAETCS OT TUIIMYHONM MOHOTOHHOM
HEyCTOHYMBOCTH ()POHTOB Ha MacmTabax MHTPY3MOHHOIO PACCIOCHMS TOBCIOAY 33 HCKIIOYEHHEM IKBATOPHUAIBLHOMN
30Hb1. [losydeHHbIE pe3ybTaThl BaYKHBI JUIs aHAJIM3a MEXaHW3MOB 00pa30BaHMsI MHTPY3UH B APKTHUECKOM OacceiiHe,
HaOJIOAIOLIMXCS B YCIIOBUSIX a0COJIFOTHO YCTOMUYMBOI cTpaTn(UKaLum, T. €. KOI/la ¢ yBeJIUMYeHHUEM IIIyOHHbI yMEHbIIIA-
€TCsl TEMIIEpaTyPa U YBEJIMUUBACTCS COJIEHOCTD.
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To study the geostrophic flow instability with a linear vertical velocity shear in a vertically bounded layer the eigenvalue
problem solution is considered. The vertical buoyancy diffusion effect on stable and unstable flow perturbations dynamics
is taken into account in the model equation. The problem is reduced to a numerical solution of a non-self-adjoint third
order differential equation with a small parameter at the highest derivative under the boundary conditions typical for the
ocean. The solutions are sought as the power expansions at zero. The eigenvalues calculation leads to the search for the
roots of a high-degree polynomial. The eigenvalue spectra are presented for various values of the problem dimensionless
parameter. The results of the eigenvalues calculation are compared with the results obtained by an alternative method
for solving an equivalent problem. It is noteworthy that the flow instability examined is an oscillatory instability, which
is fundamentally different from the typical monotonous instability of fronts on the scales of the intrusion formation
everywhere except for the equatorial zone. The results obtained are significant for analyzing the mechanisms of intrusive
layers formation, which occur in the Arctic basin under conditions of absolutely stable stratification (decrease of the mean
temperature with depth is accompanied by increase of the mean salinity).
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Investigation of the intrusive layering mechanisms in the ocean is important for parametrization of the
exchange and mixing processes, for estimating the changes in the heat and salt contents of different water
masses, and for forecasting the effect of climatic changes on the structural features of ocean waters at various
depths (see, for example, [1—3]). Since interleaving is the characteristic feature of the Arctic basin that can be
observed at different spatial and temporal scales [4, 5], the description of the intrusions generating processes
based on mathematical models becomes very relevant, especially because it can allow to determine physical
causes of instability of currents and fronts. In [6, 7] using analytical solutions accounting for diffusion of
buoyancy it was found that long-wave perturbations of the geostrophic flow with a linear vertical velocity
shear can be unstable (growing with time), and the phase velocity of unstable disturbances is directed along
the mean flow and exceeds its maximum velocity. Therefore the instability obtained can be attributed neither
to baroclinic instability nor instability of the critical layer.

The conclusion about the existence of a new type of long-wave perturbations instability [6, 7] was
confirmed by the solution of the model problem on stable and unstable perturbations of the geostrophic flow
in a vertically bounded layer with allowance for small but finite vertical circulations arising due to friction,
beta effect and temporal variability of relative vorticity [8]. The problem was solved numerically by means
of a high-precision method for solving fourth-order equations, which was proposed in the papers [9, 10] for
calculating the spectra of the Orr-Sommerfeld problem. This method, based on power series expansions of the
solution at the boundary and central points of the layer and on the joining of these expansions at an interior
point, has been modified by taking boundary conditions specific to the ocean [11], which differ from the
boundary conditions of the Orr-Sommerfeld problem and include the sought spectral parameter as a multiplier.
Numerical calculations were validated using asymptotic estimates and comparing the eigenvalue dependencies
on the model parameters, which were obtained by numerical and analytical modelling presented in [6, 7]. But
taking into account that the instability of long-wave perturbations of the geostrophic flow with a linear vertical
velocity shear is a fundamentally new effect, that is significant for understanding the mechanisms of large-
scale intrusion formation in the Arctic basin, it seems reasonable to search for an additional clear evidence
of numerical calculations [8, 11] reliability. The present work is concerned with the next topics: a) solving a
model problem, equivalent to the problem [8], by means of a simple method alternative to the method [8—11],
and comparison of the eigenvalues obtained by different methods; b) analysis of the eigenvalue spectra with a
reference to description of intrusive layering in the Arctic basin.

Model setup, solution method and eigenvalue spectra. Stable and unstable perturbations of the
geostrophic flow with a linear vertical shear of velocity in a vertically bounded layer can be described by the
following dimensionless equation:

(l—z2 —c)[i;f—Bu-(kz +n2)Fj+u2 -F+2F:%LR(62:f—Pr~Bu'(k2+7T2)a;7§], (1)

zZ

where F(z) — perturbation of pressure, K — dimensionless wave number along the flow, R = Pe-H/L, Pe —
the Peclet number (an analog of the Reynolds number), H — layer thickness, L — transversal flow scale,

Bu = (HNO /Lf )2 — the Burger number, N, — is the buoyancy frequency, Pr — the Prandtl number,

uz =pB- NO2 / (Sf 2) — a parameter characterizing the influence of beta effect on perturbation dynamics
compared with the effect of linear velocity shear s [8], ¢ = ¢, + ic, — complex phase velocity. Perturbation is
unstable (growing with time) when Imc = ¢, > 0. The boundary conditions for equation (1) are the conditions
for absence of vertical velocity at the layer boundaries:

dF 1 d°F
—Cc—+2zF = ———,z=+l, (2)
dz ikR dz
and zero flow of buoyancy at these boundaries:
d’F
—=0,z==1 3)
dz

The derivation of the presented model problem is described in detail in [6—S8].
If the cross-frontal length scale and the length scale of perturbations exceed greatly the local Rossby
radius, that is the condition 6* = Bu-(k* + n*) << 1 is fulfilled, and parameter p? has the same order of magnitude
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as 8%, the problem (1)—(3) can be simplified at Pr ~ 1 by rewriting it in the following form (for more details,

see [8]):
(-7 -c )—dFl v2uF = LR (4)
dz ' GkR dZ2
1
J(—ZZ—C)F;(Z)dZ—,LP ﬂ _ﬂ =0, (5)
’ ikR dz|_ dz|_,
2
i — ©)
dz

where F, is the first term in the expansion of the function F into a series in the parameter &°.

Equation (4) and conditions (5) and (6) describe perturbations of the geostrophic flow in a vertically
bounded layer with allowance for small but finite vertical circulations arising due to friction, beta effect and
temporal variability of relative vorticity. The model equation and the condition for absence of vertical velocity
at the layer boundaries written in a form

d’F, 1 d*F
1—22—0}—1+2F:——1, 7
( dz’ " kR dz* @

3
—cﬁ+22F1 ZLd—}j,z=ﬂ:1, (8)
dz kR dz

together with condition (6) define a problem equivalent to the problem (4)—(6) in the case of odd eigenfunctions.
In [8] the calculation of eigenvalues for odd functions was carried out on the basis of the equation (7) and
conditions (6), (8). We will consider the problem (4)—(6) for calculation the spectra of eigenvalues.

Considering that equation (4) does not change when z is replaced by —z and F (z) by F'(-z) or F (z) by
—F (=z), for any c it necessarily has an even and odd solutions, which are linearly independent. Therefore the
general solution of (4) can be written as

E:A1'E1+A2'F12+A3'F13~ )

Let F|, and F, be even and odd functions respectively. Then for the function F, the following expression
is true (see, for example, [12]):

Fy=F,-[Fy-0-dz~F,[Fp-dz; 9=1/(F,dF, /dz - F} -dF, | dz)'.

This implies that /', is an even function. Thus the general solution of equation (4) consists of one odd
and two even functions for any parameter c¢. For comparison with the results of calculating the eigenvalues
obtained in [8] we will confine ourselves to calculations of the eigenvalues for odd solutions. Taking into
account that the solutions of (4) and (7) are continuously differentiable functions (see, for example, [13]), we
will seek the solution of (4) in the form of a power series:

0
Fy(z)=a,-z+a,-2 +a;-2° +..= ) ay,, -2 (10)
n=0

The series (10) converges for any z < co. Substituting (10) into equation (4), one can find recurrence relations
for determining the coefficients in the expansion (10):

a,—c-a,=6-a,/ikR
(n+1)(1-c¢)a,,,, —(2n-1)a,, , +2a,,, =(2n+3)2n+2)(2n+1)a,,., /ikR,n=1,2,3.. (11)

Setting @, = 1 in (11) without loss of generality we can express all the coefficients of the power series (10)
in terms of the complex phase velocity ¢ and the parameter of the problem AR.

The function (10) with the coefficients found on the basis of recurrence relations (11) will be an eigenfunction
of problem (4)—(6) only if it satisfies conditions (5) and (6). It is easy to see that any odd function satisfies
condition (5). Thus to determine the eigenvalues spectrum of the problem it is necessary and sufficient to find
such values of parameter ¢ for which the condition £}, (1) = 0 is satisfied, since £, (Z) is an odd function. The

condition F}; (1)=0 reduces to the problem of determining the roots of a polynomial P (c)= an " =0,
n=0
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Fig. 1. Calculations of the eigenvalues for kR = 1 based on the determination of the polynomials roots.
a — the common roots of the polynomials for N= 10 and N = 20; b — the common roots of the polynomials for N =20 and N = 40;
¢ — the common roots for N =40 and N = 50. The white-filled circle shows the only root with a positive imaginary part
(unstable perturbations), the black-filled circles show the roots with a negative imaginary part.

Puc. 1. PacueTsl cOOCTBEHHBIX 3HAYCHUIT 3a1a4u 1IpH kR = 1 Ha OCHOBE OIpeeIeHNsI KOPHEH MOJINHOMOB.
a — oburue xopHU rorHoMOoB 11t N = 10 u N = 20; 6 — o6mue kopHu noauHoMoB it N = 20 u N = 40; ¢ — o01ue KopHI
1noaHOMOB it N = 40 u N = 50. benbIM Kpy»KKOM OTMEUEH €JUHCTBEHHBII KOPEHD C MOJI0KUTEIbHON MHUMON 4acTbIO
(HeycTOHYMBEIE BO3MYILCHUS ), Y€PHBIMH KPY>KKaMH OTMEUESHBI KOPHU € OTPHIATEIIbHOX MHIMOH 4acThIO.

where the coefficients b, are expressed in terms of the coefficients a,. This problem can be solved numerically,
for example, by means of MATLAB giving F|, (Z) by series expansion, which consists of a finite number of
terms. It is obvious that the more terms in the series, the more accurately eigenvalues and eigenfunctions can
be calculated. However, there is one important point to which attention should be paid. Taking a finite number
of terms of the series (10), that is assuming that n = N, the fake roots (not corresponding to the condition

n=N
F; (1) = 0) will exist among the roots of the polynomial P (C) = Z b, -c" =0. There is a certain technique

n=0
for filtering out such roots (see, for example, [14]), which in our case reduces to the following. First of all it is
n=N
required to calculate the roots of the equation P (C) = Z b, -c" =0 for different values of N, considering that
n=0

as the degree of the polynomial increases the accuracy in determining the mantissa of a number (the number of
digits after the decimal point) should be also increased. Then it is necessary to choose from the obtained sets
of roots corresponding to different values of N only those roots which are repeated in each set (they can differ
only in the accuracy of the mantissa of the number representation).

n=N
The results of calculating the roots of the polynomial P (C) = z b, -¢" =0 for different values of N and
n=0
the parameter kR = 1 are shown in fig. 1 in the plane ¢, (axis of abscissae) and ¢, (axis of ordinates).

The common roots of the polynomials for different values of NV are shown on fig. 1. As a result of comparing
the roots of two polynomials with different values of N, those roots that coincided with an accuracy of at least
six decimal digits were considered to be common. The plots show clearly that the number of true roots or
eigenvalues of problem (4)—(6) increases with the increase N; these roots are the complex phase velocities
of stable perturbations (decreasing with time). Using this method, one can find a sufficiently large number
of eigenvalues located along a line almost parallel to the ordinate axis. There is only one root with a positive
imaginary part (unstable perturbations), it is marked by a white-filled circle in fig. 1; moreover, this root is the
first root and appears already at N = 2. Fig. 1 shows that the point on the ¢, — ¢, plane corresponding to this
root lies far from the main line of points at kR = 1 (kR = 1 is typical for the frontal zones of the Arctic basin
[7]). The similar point arrangement in the complex plane is also typical for kR = 10 and kR = 100 (see the
spectra in [8]). The maximum accuracy of calculating this root using the MATLAB gives the following value:
¢, = 1.3319139596335208967390841724361, ¢, = 0.016783485543458846443095146690677. This

2
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Fig. 2. Calculations of the eigenvalues for kR = 10° based on the determination of the polynomials roots.
a — the common roots of the polynomials for N =50 and N = 100; » — the common roots of the polynomials
for N=50 and N = 200. The white-filled circle shows the only root with a positive imaginary part
(unstable perturbations), the black-filled circles show the roots with a negative imaginary part.

Puc. 2. Pacuerbl COOCTBEHHBIX 3HAYEHHUH 3a1aun mpu AR = 10° Ha OCHOBE OIpeIe/ICHNsI KOPHEN TIOJIMHOMOB.
a — obuue xopau noarHoMoB 1yt N = 50 u N = 100; 6 — o61me kopuu nonuaoMoB uist N =50 u N = 200.
benpiM Kpy»KKOM OTMEUYEH €AMHCTBEHHbIN KOPEHb C ITOJIOKUTEIbHOW MHUMOM 4acThIO
(HeycTOWYMBBIC BO3MYIIECHHUS ), Y4ePHBIMH KPY)KKAMH OTMEUEHbI KOPHH C OTPUIATENILHONH MHUMOH 4acThIO.

value is consistent with accuracy to the 16th decimal digit with the value of this root obtained by another
method, which was used for solving of the equivalent problem [11]: ¢, = 1.33191395963352088677,
c,=0.01678348554345884397.

Thus the results presented above validate the calculations carried out in [8, 11] and show that the considered
simple method is effective for calculating the eigenvalues for not too large values of the problem parameter kR.

But it is also interesting to answer the following question: is it possible to calculate the eigenvalues of the
problem reliably for large values of the parameter kR (i.e. when the highest derivative term in equation (4) or
(7) is multiplied by a small parameter) by means of simple method presented above?

n=N
The common roots of the polynomial P (c)= Z b, -c" =0 for different values of N and kR = 10°

n=0
are shown on fig. 2: fig. 2, a shows calculation result for N = 50 and N = 100, fig. 2, b — for N = 100 and
N=200.

The value of the root (or the eigenvalue of the problem) corresponding to the unstable perturbation for N =
200 was ¢ = 1.02236017527081 + 0.02236103467952i (where i is the imaginary unit). This value is consistent
with accuracy to not less than the 11th decimal digit with the eigenvalue of the unstable perturbation for kR =
103 ¢ =1.02236017527+0.02236103467 presented in [11].

Now two circumstances should be noted. First, according to the presented eigenvalue spectra the phase
velocity of stable and unstable perturbations is directed along the flow. However, in contrast to unstable
perturbations the phase velocity of stable perturbations is less than the maximum flow velocity. Second, the
considered instability of the flow is an oscillatory instability (c, # 0), which is fundamentally different from the
typical monotonous instability of fronts on the scales of the intrusion formation, except for the equatorial zone
(see [6] for details about monotonous instability).

Summary. This research belongs to the line of studies on instability of geostrophic flow with a linear
vertical velocity shear on the scales of intrusion formation [6—S8, 11] and is focused on the eigenvalue spectra
analysis for stable and unstable perturbations. Before the studies [6—38, 11] the formation of large-scale
intrusions observed in the Arctic basin on baroclinic fronts at absolutely stable stratification (decrease of the
mean temperature with depth is accompanied by increase of the mean salinity) used to be explained only by
interleaving models accounting for the processes of differential mixing [15]. Now the new approaches appear

44



O cnekTpax co0CTBEHHbIX 3HAYEHHUI...

to explain the physical mechanisms of intrusion formation, but they certainly require additional efforts to
verify and analyze the obtained results. This work clearly demonstrates the validity of the suggestions made
in the papers [6—S8, 11], namely: the method for calculation of the eigenvalues of the problem is sufficiently
simple in realization, and the results coincide with high accuracy with the calculations presented in [6, 11].

The research was supported by the Russian Science Foundation (project No. 17-77-10080).
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