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РАСЧЕТ ТУРБУЛЕНТНЫХ НАПРЯЖЕНИЙ В КОНВЕКТИВНО-ПЕРЕМЕШАННОМ СЛОЕ 
В МЕЛКОВОДНОМ ОЗЕРЕ ПОДО ЛЬДОМ С ИСПОЛЬЗОВАНИЕМ ДВУХ ADCP
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Представлен метод расчета турбулентных напряжений, основанный на использовании пары трехлучевых акусти-
ческих допплеровских профилографов скорости, c одной или двумя точками пересечения лучей. Для апробации мето-
да был спланирован и проведен специальный натурный эксперимент по измерению температуры воды, уровня подлед-
ной облученности и компонент скорости в конвективно-перемешанном слое покрытого льдом небольшого бореаль-
ного озера. Полученные данные позволяют рассчитать не только интенсивности пульсаций вдоль трех ортогональных 
осей, но и недиагональные компоненты тензора Рейнольдса. С использованием условия однородности средней ско-
рости по горизонтали получены количественные результаты, описывающие энергетику процессов в период весенней 
подледной конвекции: рассчитана анизотропия турбулентных пульсаций, изучена корреляция энергии турбулентности 
с интенсивностью накачки (через поток плавучести). Приведен качественный анализ параметров и динамики энерго-
содержащих структур, развивающихся в конвективном слое небольших покрытых льдом озер весной.
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вективно-перемешанный слой, акустические допплеровские профилографы, тензор турбулентных напряжений, ани-
зотропия турбулентных пульсаций.
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This paper presents a method for deriving turbulent stresses using a pair of ADCPs with one or two points of beam inter-
sections. A specific experiment, which includes measurements of water temperature, under-ice irradiation levels, and velocity 
components in the convectively mixed layer of a shallow ice-covered boreal lake, validated the method. The experimental data 
allows calculations of both the pulsation intensities along the three orthogonal axes and off-diagonal components of the Reynolds 
tensor. The specific features of spring under-ice convection processes, in particular, the anisotropy of turbulent pulsations and the 
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correlation of turbulence energy with the turbulence energy production (as the buoyancy flux), were described using the horizontal 
homogeneity assumption. Finally, the paper presents a qualitative analysis of the parameters and dynamics of energy-containing 
structures developing in the convective layer of small ice-covered lakes in spring.

Key words: boreal lake, water temperature, under-ice radiation, buoyancy flux, current velocities, convectively mixed layer, acous-
tic Doppler profilers, turbulent stress tensor, anisotropy of turbulent pulsations.

1. Introduction

During the last three decades, acoustic Doppler profilers (ADCP) have been actively used in the study of water 
bodies [1–3]. Their principle of operation is based on measurements of the Doppler frequency shift between a pulsed 
ultrasonic signal and its reflection, or the phase shift between two successive pulses.

In the experiment, a popular ADCP version was used, in which short ultrasonic pulses are symmetrically diverged 
by three narrow beams at an angle a0 =25° from the vertical. The velocity projections on the beams’ directions bi are 
measured directly at the points located on the beams. Velocity along each beam can be measured with the widely 
varying vertical resolution from centimeters to meters. In this case, neglecting the horizontal inhomogeneity of the 
flow, the average velocity for each layer, and the average velocity vertical profile can be estimated directly from the 
three registered “beam” components.

Along with the average speed estimation, when the condition of horizontal homogeneity is met, the device readings 
can serve as a basis for calculating some parameters of turbulence [4–6]. The corresponding tasks include the study of 
the small-scale structure of the velocity field with estimates of the energy dissipation rate e based on the analysis of the 
quadratic structure functions of the velocity field [5] or spectra in the inertial interval [6]. The parameters of large-scale 
disturbances and the corresponding terms in the turbulent energy balance equation are also investigated. In this case, 
the main object of study are components r<ui′uj′> of the Reynolds tensor of turbulent stresses (unless otherwise stated, 
this term is used for the “kinematic version” of <ui′uj′> of this tensor), where r is the fluid density, and ui′, uj′ are the 
pulsating velocity components in the orthogonal coordinate system. To calculate the off-diagonal tensor components 
that determine the energy pumping and energy redistribution between the components in shear flows, usually, 4- or 
5-beam devices are used [2, 6]. In the case of a symmetric arrangement of the beams relative to the vertical, for two 
such components, explicit expressions can be obtained in terms of the beam components’ pulsations squares [7, 8].

For a complete analysis of the turbulent energy balance and the study of energy-containing structures configura-
tion and topology in the convective layer, in the general case, all six components of the Reynolds tensor and, accord-
ingly, three of its invariants are required. However, calculating these from the radial velocity components measured 
with 3-beam ADCPs remains to be solved. In this paper, we propose a solution to this problem, using two rigidly 
connected 3-beam ADCPs. The implementation of the method was carried out based on experimental data obtained 
in the study of spring under-ice convection in a shallow boreal lake. Convective motions in lakes under ice arise due 
to inhomogeneous heating of the water column, which leads to the appearance of a negative buoyancy flux [9]. On 
small lakes, the phenomenon of under-ice convection is usually observed at the end of the winter period [10], when, 
after the snow melts, there is a sharp increase in the radiation flux penetrating the ice.

In ice-covered lakes, along with convective mixing, various hydrodynamic processes are observed, such as advec-
tive transport, seiches, internal waves, eddies, density circulation caused by heat exchange of water mass with bottom 
sediments, as well as the atmospheric impact on the ice cover [11, 12]. These processes form a wide range of water 
temperature variability, level fluctuations, and current velocities in ice-covered lakes [13–16].

2. Research object and description of the experiment

The measurements were carried out between March 27—April 6, 2020, in small ice-covered shallow Lake Ven-
dyurskoe, a reservoir of water-glacial origin typical for Fennoscandia. The lake’s surface area is 10.4 km2, the average 
depth is 5.3 m, and the maximum depth is 13.4 m. The ice-covered period lasts from November to May, the maxi-
mum ice thickness in different years reaches 0.4–0.8 m [17].

According to measurements on the Lake Vendyurskoe in March-April 1994–2019 (see, for example, [17]), the 
phenomenon of under-ice convection is observed annually. Under-ice convection usually begins in late March-early 
April and lasts 2–6 weeks. The under-ice gradient layer, the convectively mixed layer (CML), and the underlying 
stratified layer are the three layers that are clearly distinguished during developed convection on the vertical tem-
perature profile. As the under-ice irradiation increases, the convection intensity increases, while the lower boundary 
of the CML deepens, and the CML temperature rises. Usually, by the time the ice breaks, the CML temperature 
reaches 3.5–4.5 °C, and its lower boundary deepens to 7–9 m.
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Integrated measurements in the spring of 2020 included spatial ice and temperature surveys on March 29 at 
cross-section stations and multi-day measurements at autonomous stations between March 27 and April 6, 2020 
(fig. 1, see Inset). Vertical soundings of temperature were carried out using a CTD‑90M (temperature measurement 
accuracy ± 0.005 ºC, resolution 0.001 °C).

The measuring complex was located on the ice of the lake near the northern shore in an area with a depth of 
~7 m (fig. 1, a) and included a radiation station (three “Star-shaped pyranometers” “Theodor Friderich & Co, Me-
teorologishe Gerate und Systeme”, accuracy 0.2 W/m2, one-minute time resolution), a thermistor chain with 13 
temperature sensors (RBR Ltd., accuracy ± 0.002 °C, measurement interval 10 seconds) and two ADCPs (2 MHz 
HR Aquadopp current velocity profiler, Nortek AS, Norway) (fig. 1, b). The sensors were fixed on thermistor chain at 
depths from 0.2 to 6.2 m with an offset of 0.5 m. Using the thermistor chain data, the variability of the position of the 
CML lower boundary (hCML) was studied in the period March 27 —April 6, 2020, which was determined as a depth 
of the isotherm with a value exceeding the average temperature of the CML by 0.05 °C. The depth of the under-ice 
stratified layer lower boundary d was estimated with temperature data at the stations of the cross-section (fig. 1, а).

The two ADCPs were mounted on a special retaining frame that rigidly fixed the instruments on the ice and to 
each other. Both devices were installed in a hole with emitters located 3 cm below the lower ice boundary (fig. 2, a, 
see Inset). For the entire measurement period, the devices were set up as follows: signal discreteness was one minute 
(32 pulses with a frequency of 2 Hz), depth scanning range was 2.875 m (115 cells with a size of 25 mm). To exclude 
the mutual influence of the two ADCPs, the emitters were set in an asynchronous mode with a 30 s delay (fig. 2, b). 
Then the radial velocities were averaged over 16-s active series; further processing was carried out using these averag-
es, for which the designations bi. The root-mean-square error of bi values ​​varied in the range (0.1–0.5) mm/s.

The X-axes of both devices were oppositely directed (fig. 1, b). The measurements were carried out with two 
different versions of the mutual position of the devices: in the first experiment (Single crossing, SC), beams 1 and 4 
intersected at point C at a depth h = l1/(2 tg a0), where the distance l1 between the emitters О and О’ was 1.5 m. In the 
second experiment (Double crossing, DC), there were two intersection points (beams 3 and 5, and 2 and 6 intersected, 
fig. 1, b), and the distance l2 (0.75 m) between the emitters О and О′ was chosen as (l2 = l1/2), to ensure that in both 
experiments the beam intersections appear at the same depth h. At the depth corresponding to the intersection point 
of the beams, in the SC version, the beam components were measured at five points (A, B, C, D, E in fig. 1, b), and in 
the DC version, at four (points E, F, G, H in fig. 1, b). The SC setting of the devices was used from 17:00 on March 
27 to 9:30 on March 30, and the DC experiment was conducted between 10:00, March 30, and 10:00, April 6, 2020.

3. Method for calculating turbulent stresses with data from two ADCPs

Choosing the orthogonal XYZ system associated with the first device (fig. 1, b), the radial velocity components 
after simple trigonometric calculations can be directly expressed in terms of the orthogonal velocity components (ux, 
uy, uz) at the corresponding point. For example, for SC configuration:

	

1 0 0

2 0 0 0

3 0 0 0

4 0 0

5 0 0 0

6 0

( )sin ( )cos ;

1 3( ) sin ( ) sin ( )cos ;
2 2
1 3( ) sin ( ) sin ( )cos ;
2 2

( )sin ( )cos ;

1 3( ) sin ( ) sin ( )cos ;
2 2
1( ) sin
2

x z

x y z

x y z

x z

x y z

x y

b u C u C

b u B u B u B

b u A u A u A

b u C u C

b u D u D u D

b u E u


= a + a


 = − a + a + a



= − a − a + a

= − a + a

= a − a + a

= a + 0 0
3( ) sin ( )cos .

2 zE u E









a + a

	 (1)

In the general case, the right-hand sides of the above equations include 15 unknowns, i. e., the velocity compo-
nents at points A, B, C, D, E, and six equations are not enough to determine them. However, the given system of 
equations becomes efficient in the case, which is quite widespread in the study of geophysical flows, when the flow can 
be considered locally homogeneous in the horizontal plane. For such cases, points A, B, C, D, and E can be consid-
ered quite close, meaning that the distance between them is significantly less than the horizontal scale characterizing  
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the change in the mean flow. In this case, the components of the average velocity at different points can be considered 
the same, for example, <ux(A)>=<ux(B)>=<ux(C)>=<ux(D)>=<ux(E)>=Ux, and the only three components of the 
average velocity (Ux, Uy, Uz) remain unknown. From now on, angle brackets denote time-averaged quantities.

System (1), due to linearity, retains its form for averaged values, so that three components of the average velocity 
in the XYZ system are calculated using any three equations of system (1) written for the average values <bi> of the 
beam components, for example:
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The matrix A on the right-hand side of eq. (2) is uniquely determined by the instrumental angle a0. The inverse 
matrix T=A–1, called transformation matrix, allows, following (2), direct calculation of the components (Ux, Uy, Uz) 
of the average velocity from the calculated average values <bi> of the beam components.

Similarly, the condition of local horizontal homogeneity allows calculation of the Reynolds stresses from di-
rectly calculated pulsation intensities bi′ = bi — <bi> of the beam components. Note that the relationships (1) 
connecting the radial velocities bi with the orthogonal components of the pulsation velocity at the corresponding 
point are linear.

As a consequence, representation (2) and similar to it for beams 4–6 remain valid for the corresponding pulsation 
components bi′. Taking this into account, each of the bi′2 quantities can be directly expressed through the components 
of the stress tensor at the corresponding point, for example:

	 2 2 2 2 2
1 0 0 0 0sin cos 2 cos sin .x z x zb u u u u′ ′ ′ ′ ′< >=< > a + < > a + < > a a 	 (3)

Here, the velocity pulsation components in the orthogonal coordinate system are denoted by the u′ with the 
corresponding indices.

Under the assumption of local homogeneity in the horizontal plane, the statistical characteristics of the pulsation 
velocities at points located at the same depth are identical, for example 2 2 2 2( ) ( ) ( ) .x x x xu A u B u C u′ ′ ′ ′< >=< >=< >≡< >  
In this case, using one 3-beam instrument, we obtain three equations of the form (3) for six unknowns. However, 
although the relationship between the squares of the beam pulsations and the components of the Reynolds tensor is 
linear, it is not possible to obtain explicit expressions for at least three diagonal components of the tensor (for the 
intensity of the pulsations along the orthogonal axes). From the results of measurements, it is possible to determine 
only some of their linear combinations.

In particular, equations of the form (3) do not allow calculating the intensities of pulsations along the orthogonal 
axes, or the total turbulent intensity <u′2>. So, when summing up the intensities of “beam” pulsations, we obtain the 
expression,

	 ( )2 2 2 2 2 2 2 2
1 2 3 0 0

3 sin 3 cos ,
2 x y zb b b u u u′ ′ ′ ′ ′ ′< > + < > + < >= < > + < > a + < > a 	 (4)

which contains no off-diagonal Reynolds components, and the horizontal and vertical pulsations are separated. Nev-
ertheless, the intensity of turbulence u′2 cannot be determined from this expression since the ratio of vertical pulsa-
tions to the total intensity 2 2/zu u′ ′ζ =< > < >  is unknown.

With a single 3-beam device, the problem can be partially solved only in some specific cases. For example, due to 
the modified configuration of the beams [18], it is possible to calculate the intensity of vertical pulsations, which is of 
particular interest for assessing vertical diffusion.

The use of 4-beam devices partly solves the problem. In this case, there are four equations of type (3), and, as 
noted in the introduction, with a symmetric arrangement of the beams, the cross components <ux′uz′> and <uy′uz′>, 
which determine the pump intensity in shear flows, can be directly calculated from the difference of the squares of the 
pulsations of the corresponding beam components [1, 8].

For a complete solution, it is necessary to increase the number of independent equations of the type (3) to six. 
For this purpose, we used two coupled devices with a total number of beams of 6, which makes it possible to obtain 
six equations for the components of the Reynolds tensor.

The use of this equation system still does not lead to a complete solution to the problem. The determinant of 
the coefficient matrix of this system vanishes, which indicates its singularity. In other words, not all equations of the 
system are linearly independent. It is due to the azimuthally symmetric configuration of the beams of both devices. In 
this case, the sum of the beam intensities, of the first device, for instance, is determined by the formula (4) and does 
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not depend on the horizontal orientation of the beams. A similar expression is valid for the second device, i. e., the 
sum of the first three equations of the system coincides with the sum of the last three, and one equation is not enough 
to find the six unknowns.

However, the problem can be solved with the chosen setting of the instruments, taking into account that two 
radial velocity components are simultaneously measured at the points of intersection. The averaged correlations of 
these components, for example, <b1′b4′> in the SC setting using the matrix A (see (eq. 2)), can be represented as a 
linear combination of the orthogonal turbulent stresses:

	 2 2 2 2
1 4 0 0sin cos .x zb b u u′ ′ ′ ′< >= − < > a + < > a 	 (5)

Equation (5) plays the role of a missing linearly independent equation. Moreover, there are two such equations 
in the DC setting (for correlations <b2′b6′> and <b3′b5′>), so one of them can be used to verify the calculation results.

The noted specificity of the equation system also determines some of the features of data processing and calculation. 
Namely, with both settings of instruments, there are possible alternatives in the use of experimental data and, accord-
ingly, in the choice of six independent equations. In this case, for example, for the first setting, two options are possible:

1. Exclude one of the equations for the beam intensities, replacing it with equation (5) for the correlation of the 
beam velocity pulsations at the intersection point. The advantages of this option include a reduction in the size of the 
horizontal spot, in which uniformity of parameters is assumed. However, there are two drawbacks, specifically, in-
formation on the intensity of pulsations along the direction of the excluded beam is not used and, additionally, (if any 
of beams 2, 3, 5, 6 are excluded), an artificially created asymmetry of the averaging region.

2. Use linear combinations of beam intensities. Here, with proper selection, both the symmetry of the spot and 
most of the information obtained are preserved. For example, one of the alternatives is that the system of equations 
uses their sum and equation (5) instead of the first (for <b1′2>) and fourth (for <b4′2>) equations. Apparently, there 
are numerous alternatives, especially in the DC setting.

In this work, the second option was used for the implementation of the method. The procedure for selecting 
independent equations and their specific form is presented in the Appendix.

The choice of the time averaging scale T is important in data processing and calculations. In the course of calcula-
tions, this scale was varied, and the characteristic time t (turnover time) of relaxation of the energy-containing struc-
tures of the mixed layer was used as the minimum value of T [15]. The value of t was calculated based on estimates of 
the characteristic size lc integral scale of turbulence) and the velocity wc pulsations in the energy-containing interval. 
For the value of lc, the thickness of the convective layer [19] hC = (hCML-δ) was used as a governing parameter.

The characteristic scale of velocity pulsation wc was identified with the so-called convective velocity w*, deter-
mined from the negative buoyancy BR [19]: w* = (BRhC)1/3. In the case when gravitational instability is created due to 
the volumetric absorption of solar radiation H(z) (W/m2), BR, which characterizes the pumping of convective energy 
in a vertically homogeneous layer hC, is determined by the equation [10]:

	 2( ) ( ) ( ) ,
hCML

R CML
c

B I I h I z dz
h d

 
= b d + − 

 
∫ 	 (6)

where I = H/(cpr) is a kinematic flow of solar radiation (K m/s), b = aT g is a buoyancy coefficient, aT is a coefficient 
of thermal expansion; r and cp are density and specific heat of water at constant pressure.

The dependence of the flux I on the depth was approximated by an exponential with the extinction coefficient 
γ constant over the spectrum, time and depth, I(z) = I(δ)e–γz. In this case, the expression for BR assumes the form:

	 2( ) 1 exp( ) (1 exp( )) .R c c
c

B I h h
h

 
= b d + −g − − −g g 

	  (7)

The calculations of BR and w* used γ ≈ 1,0 м–1 [16].

4. Results

4.1. Meteorological conditions, ice cover, solar radiation, temperature profile

During the period of the spatial survey on March 29, 2020, at the stations of the longitudinal and cross-sections, 
the total ice thickness varied within 35–49 cm, with an average value of 40 cm. At the station of the experimental 
complex, the total ice thickness was 40 cm, crystalline ice was 29 cm, and white ice thickness was 11 cm. In the period 
between March 29 and April 6, no active ice melting was observed. Fresh snow fell on April 1–2. The snow thickness 
at the time of measurements on April 6 was 1–2 cm.
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In the period between March 28 and April 6, the daytime maximums of the incident radiation reached 600–
800 W/m2. In the first days of measurements on March 28–31, the ice surface was practically free of snow, and 
the daytime maximums of reflected radiation fluxes were 200–230 W/m2, under ice — 90–100 W/m2 (fig. 3, a, see 
Inset). After fresh snow fell on April 1–2, the daytime maximums of the reflected radiation flux increased sharply to 
500–700 W/m2, and under the ice, the radiation flux decreased to almost zero. On April 3–6, the fluxes of reflected 
radiation reached 300–500 W/m2, and under ice, the radiation flux increased to 50–60 W/m2.

During the measurement period on March 29, 2020, at the cross-section stations, the lower boundary of the un-
derglacial stratified layer was at depths of 0.4–0.5 m. In the period between March 30 and April 1, the lower boundary 
of the CML actively deepened from 4.0 m to 5.5 m (fig. 3, b). After snowfall on April 1–2, the process of the con-
vective layer deepening stopped, and on April 3–6 hCML varied within 4–5 m. Thus, the SC setting between March 
27–30 coincided with the active development of convection. For the DC setting, the conveсtion phases changed 
from active development of convection (March 30–31) to its almost complete attenuation (April 1–2) and weak 
renewal (April 3–6). The evolution of temperature profiles is shown in fig. 3, c. The ADCP scanning area was within 
the CML for the entire measurement period (fig. 3, b).

The thickness of the convective layer hС and with equation 7, the convective velocity w* were calculated using 
estimates of hCML and d. The daily maximums of w* varied in the range of 0.9–2.7 mm/s. For the relaxation time of 
energy-containing structures t = hc /w* a lower estimate was obtained. Its value varied in the range 30–50 minutes. 
The latter estimate was further used as the basis for calculating the mean values. A 100 minutes interval was used as 
the time averaging base scale T.

4.2. Average velocity

The advantage of using two rigidly coupled ADCP instruments is the ability to check the horizontal uniformity 
condition for average speed directly. Fig. 4 shows (see Inset) the dependence of the horizontal components Ux and Uy on 
time, calculated separately for each instrument over the entire time interval of measurements for a depth of h = 1.61 m.

The results indicate that in the SC setting (l1 = 1.5 м), sometimes the deviations from homogeneity were signifi-
cant, especially for the Y velocity component. During the experiment in the DC setting, when the distance l2 between 
the emitters was 0.75 m, the condition was fulfilled with a sufficiently high degree of accuracy.

4.3. Turbulent stresses

All six components of the turbulent stress tensor were calculated using directly derived values of the beam intensi-
ties <bi′2> and cross-correlations <bi′bj′> at the points of intersection of the beams. Detailed equations are presented 
in the Appendix. The so-called realizability conditions can serve as a simple and visual indicator of the the method’s 
adequacy, in particular, the positive definiteness of the diagonal elements of the tensor (intensities of pulsations along 
the orthogonal axes) and the fulfillment of the Cauchy-Schwarz inequalities <uiuj>2 ≤ <ui

2> <uj
2> (repeated indices 

do not sum).
In the first setting (SC), the realizability conditions were satisfied over the entire time interval for the intensities of 

pulsations along the X and Z axes (fig. 5, a, see Inset), even for the minimum averaging period of 100 minutes. Partly, 
it is due to the design of the experiment that facilitated the calculations of all three components of the Reynolds tensor 
in the XZ plane. The components can be calculated autonomously using three directly calculated quantities (b1′2>,  
< b4′2> and < b1′b4′>) at the point of intersection of beams 1 and 4 (see formula (A2) in the Appendix). The root-
mean-square values (r. m. s.) of pulsations along the X and Z axes reached values of 2.5 mm/s and 1.2 mm/s, respec-
tively, and their ratio varied within 1.3–3.0.

The time variation of the convective velocity w* calculated from the buoyancy flux can be considered a direct 
indicator of energy pumping. The ratio of the r.m.s. vertical velocity fluctuations to w* is an important parameter for 
describing energy redistribution. Its value, obtained in the study of various geophysical currents, varies within a wide 
range from 0.1 to 0.7 [20]. In this work, an estimate of ~0.3 was obtained for this parameter, and the ratio of w* and 
(r. m. s.) of horizontal pulsations turns out to be very close to 1.

The other three components of the tensor are determined with lower accuracy, while at some times, nonphysical 
(negative) values for the intensity of pulsations along the Y-axis were obtained. However, these intervals, marked 
by shading in fig. 5, b, are small and decrease significantly with an increase in the averaging period. As shown by a 
comparison of fig. 4 and 5b, the local violation of the realizability conditions can be explained by coincidence with 
the local homogeneity disruption. It should be noted that the total intensity of pulsations in the horizontal plane re-
mained positively definite throughout the entire measurement period.
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As for the temporal variability of turbulent stresses, note their daily periodicity, and a significant (~2–3 h) delay 
compared to changes in the radiation flux. The inertia effect, found in both devices, is represented by comparing the 
curves describing the change in stresses and convective velocity w*. In [16], a similar delay was found when calculat-
ing the energy dissipation rate in the convective layer of an ice-covered lake.

Significant variations in all turbulent stresses during daylight hours should be noted also. In the presence of an 
average current, such variations can be interpreted as the result of scanning of large, non-uniform, in terms of turbu-
lence parameters, convective cells that are moving past the instrument. Moreover, the time scale of these variations 
allows the estimation of the horizontal dimensions of such cells. As shown in [15], their sizes can reach tens of meters 
in large lakes.

In the second setting (DC), when the instruments were twice as close to each other, the condition of local ho-
mogeneity was met with acceptable accuracy practically during the entire 6-day measurement period (fig. 6, see 
Inset). On the other hand, in this setting, the configuration of the beams eliminated a certain “privilege” of the XZ 
plane, and the risk of realizability conditions violation was not associated with any specific components of the tensor. 
Accordingly, these violations were found for several tensor components, including the intensities of pulsations along 
the Y and Z axes (fig. 6).

The corresponding time intervals, however, were significantly reduced with an increase in the averaging period to 
150–200 minutes. On the whole, the appearance of “nonphysical” intervals in the DC setting (especially significant 
for vertical pulsations) can be explained by the instability of the convective structure under conditions of a weak and 
unstable radiation flux.

The under-ice warming conditions in the DC formulation were more variable, yet, the variability of turbulent 
stresses demonstrates the same basic features as in the SC formulation: correlation with radiative flux, lag, and vari-
ability during daylight hours. The quantitative estimates for the intensity of the pulsations are also consistent with 
those obtained in the first setting. The only exception is two days with a low level of solar radiation, when the inten-
sities of the pulsations were very small, at the level of the instrument noise.

The stress calculation errors were estimated to verify the results. During the experiment, both devices operated 
in a high-precision mode (pulse-coherent mode); however, even in this case, the noise level of the initial signal was 
relatively high. This noise decrease was the main reason for the two-stage averaging procedure. In this case, the 
preliminary averaging, as noted above, was carried out over a 16-second interval (n1 = 32 pulses with a frequency of 
2 Hz; 16 s). The time scale of this averaging was linked to the Kolmogorov dissipative time scale 1/2( / )dt = η e (h is 
the kinematic viscosity, e is the rate of energy dissipation), following that the turbulent pulsations themselves are 
represented by frequencies with an upper threshold 1

dt
− . The efficiency of such a procedure for reducing (by a factor 

of 1n ) the instrumental noise was reported in [21]. In our case, this procedure made it possible to reduce the noise 
level to values ​​below 10–3 m/s, following the results obtained earlier in [22] when studying the field of internal waves 
with weak energy, with similar device settings.

At the second stage, following the methodology presented in [21, 23], the ensemble averaging over time intervals 
of 50–100 minutes was done (that is, using n2 = 50–100 “instantaneous” velocity values obtained from the results of 
preliminary averaging). In this case, the errors for the stress σR,i were calculated under the standard assumptions by 
the formula:

6
2 12 2

,
12

2
R i ij j

j
M B

n
−

=
s = ∑ .

The calculation results are illustrated in fig. 7 (see Inset), which presents the confidence intervals for all six com-
ponents of the stress tensor at 95 % confidence for the first two days of measurements.

For different components of the Reynolds tensor, the error estimates differ significantly, which was expected, 
considering the “privilege” of the XZ plane noted in the text and the high sensitivity of the calculations to the angu-
lar spacing of the beams. In particular, the error in determining the maximum values varies from 10 % (for 2

1u′< >  
and 2

3u′< > ) up to 30–40 %. The most problematic for a given instrument configuration is the component 2
2u′< > .  

Here, even for problematic components, the threshold detected values turned out to be relatively low, reaching 
0.3–1.4 mPa.

In addition, note that the results presented should be considered only as an estimate of the error from below. In 
particular, using the simplest formula, interbeam correlations and temporal autocorrelation of signals for each beam 
were not taken into account. Refinement of these calculations, and the search for the optimal instrument configura-
tions to reduce the error, is one of the priorities for further work.
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5. Discussion

5.1. Beam intensities

The estimates presented in the previous section are based on a quantitative analysis of the experimentally ob-
tained intensities <b′i2> of pulsations of the beam velocity components and cross-correlations at the intersection 
points. All these values are relatively small in the conditions of the under-ice convectively mixed layer. Nevertheless, 
even in conditions of a weak signal, a significant difference in intensities is recorded for different beams. It is import-
ant to emphasize that this difference is not a consequence of significant errors, although the latter, of course, have 
an impact. The main reasons are the violation of the local horizontal homogeneity and the anisotropy of the stress 
tensor. The coincidence of the values (within the measurement errors) of the quantities <b′i2> can be expected only 
in the case of isotropic turbulence, which is formally confirmed by the analysis of the matrix connecting these values 
with the components of the Reynolds tensor (see Appendix). As a consequence, even estimates of the total turbulence 
energy based on the averaging of beam intensities [1, 7] can be considered only as a very rough approximation as the 
sum of the three terms <b′i2> depends on the anisotropy parameters. Geophysical currents in the overwhelming ma-
jority of cases are anisotropic, and, accordingly, the intensities <b′i2> do not coincide in magnitude. The analysis of 
these differences is a feature of the method proposed in this work.

5.2. Energy-containing structures in the CML

The method proposed in this work allows for a comparative analysis of the variability of the averaged and pulsation 
velocity components, which is essential for elucidating the mechanism of heat transfer in the convective layer. The ques-
tion of this mechanism’s nature and, accordingly, of the spatial structure of the CML remains unanswered. In particu-
lar, there is a discussion if the heat transfer is due to the presence of sufficiently stable quasi-deterministic cells, or does 
it occur through irregular collapses (“thermals”, “plumes”) under conditions of undeveloped unstable stratification?

The first interpretation is indirectly supported by the results reported in [24], in which the horizontal structure of 
the CML was investigated with underwater gliders. At the same time, both individual (“chimney”) cells, the size of 
which is comparable to the thickness of the CML, and their comparatively ordered aggregates were found.

The results obtained in this work indicate that the intensities of the pulsation components of the velocity in the CML 
change with a well-pronounced daily periodicity (fig. 5, 6). At the same time, the averaged horizontal velocity compo-
nents have no diurnal periodicity, however, there are oscillations of very significant amplitude with a shorter (several 
hours) period comparable to the relaxation time t ~ h/w* (fig. 4). In this regard, it can be assumed that the nature of the 
temporal variability of the averaged velocities reflects the structure of the largest and most stable energy-containing vor-
tices (convective cells) [15, 16]. However, why these oscillations practically do not diminish at night, and, accordingly, 
the structures are preserved for a significant period in the absence of radiation, remains an open question. Possibly, the 
factor contributing to such survival of structures may be the two-dimensionalization of the mean current at night. To 
prove this hypothesis, it is necessary to analyze the anisotropic structure of turbulence with the second and third invari-
ants of the Reynolds tensor, which is a work in progress. The analysis of two-dimensional (frequency-depth) spectra of 
pulsations of various velocity components [25] at night and daytime may also appear to be of use.

5.3. Turbulent diffusion

The calculated values of turbulent stresses can serve as the basis for such an applied problem as a separate assess-
ment of the vertical and horizontal diffusion coefficients K for a convective layer.

The coefficient K is an essential quantitative characteristic of the transport of dissolved substances, in particular, 
dissolved gases [26]. Horizontal diffusion from coastal sources [27] and vertical transport of methane accumulated in 
the bottom layers [28] play a significant but quantitatively not fully defined role in the circulation of methane in lakes 
[28]. The K in a convective layer can be estimated based on the Prandtl representation K ~ u l, where u and l are the 
characteristic scales of the velocity and size of the energy-containing pulsations.

The considerable (approximately threefold) difference between the r.m.s. velocity fluctuations in the vertical 
and horizontal planes obtained in the course of calculations indirectly indicates a significant anisotropy of turbulent 
transport in the convective layer of ice-covered lakes during spring convection. Taking into account also that the 
horizontal dimensions of convective cells are several times larger than their vertical scale (see, for example, [29]), it 
can be concluded that the coefficients of vertical and horizontal diffusion in such a medium may differ by an order of 
magnitude. In the future, it is planned to concretize these conclusions based on an estimate of the characteristic sizes 
of pulsations, using the method proposed in [15] for progressive vector diagrams analysis of the velocity components.
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6. Conclusion

The paper proposes a method for all components of the turbulent stress tensor calculation using two ADCPs. The 
method was tested using the data of a field experiment, including measurements of water temperature, current veloc-
ities, and under-ice radiation in a convectively mixed layer of a boreal ice-covered lake in spring. Despite the relative 
weakness of the velocity signal, physically consistent results were obtained on the time variation of the pulsations’ 
intensities and off-diagonal components of the Reynolds tensor. A correlation was found between the turbulence 
parameters and the radiation flux, which determines the energy pumping. A quantitative assessment of the degree 
of pulsations’ anisotropy is obtained, and the possible causes of its occurrence and daily variability are analyzed. It 
is shown that the calculation results are very sensitive to the degree of the condition of horizontal flow homogeneity 
fulfillment.
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Appendix. Calculation of turbulent stresses from the correlations of the pulsations of the beam velocity components.
The calculation is based on a system of equations connecting the intensities of beam pulsations with the sought 

elements of the Reynolds tensor:
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The determinant of the coefficient matrix of this system vanishes, i. e., one of the equations is not independent. A 
similar problem arises using two 4-beam instruments. In this setting, as shown in [30], this problem can be overcome 
by the orientation change of one of the devices. In this case, however, the tilt of the axis of one of the devices leads 
to an increase in errors (due to the small angular spacing of some beams), the need to recalculate the cell numbers 
for each beam, and also increases the probability of violation of the condition of horizontal homogeneity. In this 
work, the problem is solved differently. One equation (or two in the DC version) of the type (3) for the intensities of 
beam pulsations is replaced by equation (5) (or two analogous to it in the DC formulation) for the correlations of the 
pulsations at the points of beams intersections. For example, in the SC setting, the sixth beam can be excluded from 
consideration, and the system of equations can be written using directly calculated values (b1′2, b2′2, b3′2, b4′2, b5′2, 
b1′b4′). Other options are also possible, but in any case, depending on the choice of excluded data, either the size of 
the horizontal “spot” in which the measurements are taken is reduced, or its symmetry is violated.

There are no fundamental differences between the various options, but in real experimental conditions, when the 
signal is rather weak, and the assumption of local horizontal homogeneity is fulfilled only in a certain approximation, 
the choice of an option can significantly affect the accuracy of the results obtained in the calculation.

In this work, to minimize the errors in the calculations, we did not use the beam intensities directly, but their 
linear combinations corresponding to the symmetry character of the beam configuration. In particular, in the SC 
formulation, the combinations can be represented as the following six-dimensional “vector”Bi:

( )2 2 2 2 2 2 2 2 2 2
1 4 1 4 2 3 5 6 2 3 5 6, , , , , .iB b b b b b b b b b b b b′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − − + + +

Similarly, we represent the sought components of the Reynolds tensor in the form of “6 — vector”: ( 2 ,i xR u′= < >  

)2 2, , , , .x y x z y y z zu u u u u u u u′ ′ ′ ′ ′ ′ ′ ′< > < > < > < > < >  In this case, the system of equations for Ri can be written in the following 
compact form:
	 Bi = MijRj, i, j = 1…6,	 (A1)
where 6 × 6 matrix M has a form:
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Technically, the solution to system (A1) is reduced to finding the inverse matrix M–1.
Note that in the presented variant of the choice of the system, the first three equations form an autonomous sub-

system for the ux′2, uz′2, ux′ uz′ tensor components. Its solution is as follows:
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Regarding the DC setting, the results presented in the main text correspond to the following selection of exper-
imental parameters:

( )2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 4 1 4 2 6 3 5 2 6 3 5 3 6 2 5 3 6 2 5, , , , , .iB b b b b b b b b b b b b b b b b b b b b′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + − + + − + + − − + + +

It should be emphasized that the choice of experimental data for constructing a system of equations is only a tech-
nical element of the calculation, and does not fundamentally change its result, although it may improve the estimates.
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a)

b)

Fig. 1. a — Location and bathymetry of the Lake Vendyurskoe (red dot) with indication of 
the measuring complex (red triangle) and measuring stations (blue circles). b — Scheme of the 
measuring complex. Indexes 1, 2, 3 — the beams of the first device, 4, 5, 6 — the second; in this 

case beams 1 and 4 lie in the XZ plane. O and O ‘ — emitters of devices.
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b)

a)

Fig. 2. a — ADCP Ice Installation, b — Pulse train for asynchronous operation of two ADCPs.
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Fig. 3. Fluxes of solar radiation at the lower boundary of ice (a) and temperature of the water 
column (b) March 28—April 6, 2020. c — vertical temperature profiles. The blue line on the panel 

(b) is the lower boundary of the CML, the gray dotted line is the ADCP scan area.
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Fig. 4. The dependance of the horizontal components of the average velocity Ux (a) and Uy (b) on 
time, calculated from data of two ADCPs at a depth of 1.61 m. The zero of the horizontal axis corre-
sponds to the start of the measurements (16:30 03.27.2020). 1 — I ADCP, 2 — II ADCP, 3 — noon, 

4 — time intervals when the homogeneity condition was disrupted, 5 — change of settings.
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Fig. 5. а — The dependence of convective velocity w* and of the intensities of turbulent pulsations 
along the axes X (1), Z (3) on time. Setting SC. b — Turbulent stresses in the XY plane, setting SC. 
Pairs of numbers indicate the indices of the corresponding elements of the Reynolds tensor. Here 
and in fig. 6 the shaded areas in the region of negative and positive ordinates serve as indicators of 
time intervals when, respectively, the Cauchy-Schwarz condition <u1u2>2 ≤ <u1

2> <u2
2> and the 

positive definiteness of the pulsation intensities were violated.
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Fig. 6. The dependence of turbulent stresses in the XY plane (12, 11, 22) and the square of the 
convective velocity (w*2) on time.
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Fig. 7. Results of stresses calculations for the confidence probability 95 %.


