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Abstract

Field measurements of the characteristics of the bottom-reflected lidar echo signal were conducted in the waters of
Bechevinskaya Bay. The studies employed the APL-3 airborne polarization lidar (sounding pulse energy of 45 mJ, re-
ceiving optical system diameter of 100 mm, and system response function duration at the 0.5 level of 10.8 ns). The depth
range during the investigations varied from 3 to 22 m, while the flight altitude ranged from 500 to 1200 m. The hydrooptical
characteristics of the bay waters were assessed based on lidar sounding data. For the analysis of field measurement data,
areas with similar values of the lidar attenuation coefficient were selected. The results of field experiments demonstrated
that the relationship between the magnitude of the lidar echo signal and the length of the sounding path for water layers and
the seabed is more complex than what is suggested by the conventional form of the lidar equation. The introduction of an
additional term into the lidar equation, which defines the dispersion of the irradiance distribution in the cross-section of an
infinitely narrow beam of light passing through a water layer of a given thickness, allowed for a more accurate description of
the obtained experimental dependencies. The registered effect must be taken into account when designing lidar systems, as
well as during the processing and analysis of lidar survey data.
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AHHOTAIMA

HarypHble n3mepeHus XapakTepruCTUK OTPaXKeHHOTO OT JTHA 3XO-CUTHaJla BHIMOJHEHbl B aKBaTOpuM beueBMHCKOM
oyxtbl. [lpu mpoBeaeHWM WCCASTOBAHUI WCITOJIb30BAaH aBUALMOHHBIN ToJsipu3auoHHblil Jvmap AIlJI-3 (3Heprus
30HAMpYIOIIero umiyiabca 45 MK, nuaMerp NpUeMHOK omTuyeckoil cuctembl 100 MM, UIMTEIbHOCTh MMITYIbCHOM
XapakTepucTuku Jmgapa 1o ypoBHio 0,5—10,8 wHc). JAmama3oH M3MeHEHMsT DIIyOWH IIpU IIPOBEICHUN MCCISIOBAHUIA
coctaBu OT 3 10 22 M, BbicoTa nojieta MeHsuiach oT 500 1o 1200 m. O1ieHKa r’uIpOONTUYECKUX XapaKTEPUCTUK BOI OyXThI
MPOBOAMJIACH 1O JAHHBIM JIMIAPHOTO 30HAMPOBaHMsI. Pe3ybraThl HATYpHBIX 3KCIIEPUMEHTOB TTOKAa3aJIk, YTO 3aBUCUMOCTD
BEJIMUMHBI U (POPMBI TUAAPHOTO SXO-CUTHAJIA OT MPOTSKEHHOCTH TPACChl 30HAMPOBAHUS MPU PETUCTPALIMU CJIOEB BOIbI
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1 MOPCKOTO JIHa UMeeT 00Jiee CIIOXKHBII BUJI, YEM 3TO CJICAYET U3 OOILENPUHSTON (hOPMBbI 3aITMCH JTUJAAPHOTO YPaBHEHMUSI.
BBenmeHnue nomomHNUTEILHOTO YieHA B IMIAPHOE YPaBHEHME, OMIPEACIISIONIECTO IUCIIEPCHIO pacIipeleIeHs OCBEIIEHHOCTH
BIIONEPEYHOM CEYEHU U OECKOHEYHO Y3KOTO ITyYKa CBeTa, MPOILEAIIEeT0 Yepe3 BOAHbIN CJI0M 3a1aHHOM TOJIIHBI, [TO3BOIUIIO
OoJiee TOYHO OIMMCaTh IOJYYeHHBIE JKCIIEPUMEHTAIbHBIE 3aBUCUMOCTH. 3apeTrMCTPUPOBAHHBIN 3(h(HEKT HEeOOXOOUMO
YUYUTBIBATh MPU MPOEKTUPOBAHUHN JIUAAPHBIX KOMITJIEKCOB, a TAKXKe IpH 00paboTKe U aHAIN3€ NTaHHBIX JIMIAPHON ChbeMKH.

Kiouesslie ciioBa: 6aTuMeTpruiecKuii auaap, baTumeTpuieckast CbeMKa, JUaapHOe YpaBHEHUE, BbICOTa 30HIUPOBAHMS,
TeoOMeTpUUYeCcKuit (hakTop

1. Introduction

Marine profiling (radiometric) lidars enable the solution of a number of oceanographic problems [1—3].
Among them, we can highlight the registration of the positions of light scattering layers [4, 5], the determina-
tion of hydrooptical characteristics of the near-surface layer of seawater and their spatial variability [6—9], as
well as the observation of internal waves [10—12]. A special focus is placed on laser bathymetry [13]. This is the
most developed area of lidar remote sensing. Several lidar bathymetric systems are known, designed as certified
measuring instruments [ 14—16]. Such systems are used to register the variability of the sea floor depth in shallow
coastal sea areas, to monitor the condition of navigation channels, and for studying the bottoms of inland water
bodies and rivers [16, 17].

The lidar sounding path consists of atmospheric and underwater segments. Depending on the target of
the sounding and the water transparency, the length of the underwater segment can range from a few meters
to several tens of meters. The range of variation for the atmospheric segment is significantly greater. In un-
derwater lidars, the atmospheric segment is absent. In shipborne lidars, its length typically varies from 1 to
20 meters. In airborne lidars, the length of the atmospheric segment can range from 50 meters to 500 meters.
In certain cases, it may extend to lengths of 1 to 2 kilometers [18] and even up to approximately 10 kilometers
[19]. When the lidar is placed on a satellite, the length of the atmospheric segment can increase to hundreds
of kilometers [20].

Typically, in the process of lidar surveying, the altitude at which the lidar is positioned remains fixed, re-
sulting in a lack of experimental data regarding the dependence of survey results on altitude. Nonetheless, the
length of the atmospheric segment significantly affects the amplitude and shape of the lidar echo signal decay.
Works [13, 21, 22] utilize an analytical solution to the transfer equation in a small-angle approximation to
investigate the influence of the sounding path length on the magnitude of the echo signal reflected from the
seabed. The dependencies of the echo signal amplitudes reflected from the surface, water column, and seabed
on the sounding path length, derived from calculations [13, 21, 22], differ from the widely accepted inverse
square law. They exhibit a more complex behavior. The aim of this study is to experimentally investigate the
dependence of the amplitude and shape of the echo signals reflected from the water layers and the seabed on the
lengths of the atmospheric and underwater segments of the sounding path.

2. Materials and Methods
2.1. Description of the Equipment

For the research, the airborne polarization lidar APL-3 (developed by the Shirshov Institute of Oceanology
Russian Academy of Sciences [23]) was utilized. The digital four-channel oscilloscope LeCroy HDO4034 was
employed for digitizing and recording the lidar echo signals. The optical unit of the lidar was mounted above the
open optical window of the laboratory aircraft at an angle of ¢ = 15° from the vertical, which minimized the im-
pact of laser beam specular reflections from the disturbed water surface. During the lidar survey, the cross-po-
larized component of the lidar echo signal was recorded. The main technical specifications of the APL-3 lidar
are summarized in Table 1.

Table 1
Main technical characteristics of the APL-3 lidar
Characteristic Value
Wavelength of the sounding radiation, nm 532
Duration of the sounding pulse Af, ns 7
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Fin table 1

Characteristic Value
Energy of the sounding pulse Wj, mJ 45
Sounding frequency, Hz 30
Beam divergence of the sounding pulse 26,, mrad 5
Field of view angle of the receiving optical system of the cross-polarized channel 26,, deg. (mrad) 2 (35)
Diameter of the input lens of the cross-polarized channel, mm 100
ADC resolution, bits 14
Digitizing frequency of lidar echo signals, GHz 2.5

2.2. Research Area

Experimental studies were conducted in August 2018 in the area of Bechevinskaya Bay in Avacha Bay on
the Kamchatka Peninsula [18, 24]. The spatial configuration of the flight paths is illustrated in Fig. 1. The
bay is surrounded by hills with an elevation of approximately 1 km. Safety regulations limited measurements
to the entrance of the bay. During the lidar bathymetric survey, four flight paths were performed at altitudes
of 500, 700, 900, and 1200 m. The seabed in the bay is characterized by varying depths, allowing for the ac-
quisition of lidar echo signals corresponding to bottom depths ranging from 3 to 22 m over a relatively small
area. During the field experiment, the state of the water surface was close to calm, with wind speeds not ex-
ceeding 2 m/s. This is corroborated by visual observations from the aircraft using a camera mounted in the
photohatch.

159.66 15968 159.7 150.72 159.74 150.76 159.78 150.8 150.82 159.84 150.86
o
E

Fig. 1. Flight path over Bechevinskaya Bay. The dashed lines indicate the sections
where lidar sounding was performed. The arrow shows the direction of flight along
the tracks
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2.3. Lidar data processing method

The processing of lidar data for seabed surveying was carried out using the standard method employed in
bathymetric surveys [13, 24, 25]. An example of seabed depth determination z, is illustrated in Fig. 2. The refer-
ence point is defined as the moment the echo signal reflected by the surface layers of water. The point of return
from the seabed is considered its position. Subsequently, the time interval Az, between the moments of receiving
pulses from the surface layers of water #, and from the seabed 7, is calculated:

Atb:tb_ts‘ (1)
The bottom depth z,, is determined by the formula:

— chtb
=7
where ¢, is the speed of light in seawater. In the case where the bottom return signal is located on the trailing
edge of the lidar echo signal, the amplitude of the bottom signal P, is determined as the difference between the
peak amplitude of the bottom return and the amplitude of the water column signal at the time corresponding
to the peak of the bottom return. An example of such an echo signal, acquired from an altitude of 900 m at a
bottom depth of 12.7 m, is shown in Fig. 2a. In the case where the bottom return is formed in a section where
the level of the water column echo signal is below the noise floor of the receiver-recording system, its amplitude
P, is measured relative to the noise level. An example of such an echo signal, acquired from an altitude of 500 m
at a bottom depth of 21.5 m, is shown in Fig. 2b.

(2)
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Fig. 2. Examples of lidar echo signals illustrating the method for determining the bottom depth z, and the amplitude of the
bottom signal P, obtained from an altitude of 900 m at a bottom depth of 12.7 m (a) and from an altitude of 500 m at a
bottom depth of 21.5 m (b)

3. Results and Discussion

The power of the lidar echo signal P as a function of time ¢ is described by the lidar equation [1, 26]. In its
conventional form, the equation is expressed as follows:

ol 22 e W AT, (1-1)?
¢ 2An,H +Z)?

w

p'(m, Z)exp

7z
-2 j a(Z"dZ' |, (3)
0

where Zand H represent the lengths of the underwater and atmospheric segments of the sounding path, respec-
tively; c,, is the speed of light in seawater; n,, is the refractive index of seawater; W), is the energy of the sounding
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pulse; A is the area of the receiving aperture; T, is the transmittance of the receiving system; 7 is the Fresnel
reflection coefficient for the air-seawater interface; a(Z) is the lidar attenuation coefficient; '(sm, Z) is the effec-
tive value of the volume scattering function (VSF) at the scattering angle 6 = 180°. The true depth z can be re-
calculated from Z accounting for the sounding angle . The time ¢ is measured from the moment when the
sounding pulse crosses the water surface. When calculating the bottom-reflected echo signal, the expression
¢, At

-2nB'(m, Z) is replaced with the bottom reflectance coefficient R,. The dependence of echo signal power

P on the sounding path length is determined by the so-called geometric factor (n,,H+Z2)~2.

The lidar Eq. (3) is derived under the assumption of single backscattering. It also assumes that the receiv-
er’s field-of-view angle is significantly larger than the initial laser beam divergence (012 << 022) and sufficiently
wide to capture all radiation backscattered from the corresponding water layer depth. Under field conditions,
due to multiple scattering along the path from the water surface to the target and back, this assumption is not
always valid. A more universal formula is required that remains applicable when the laser spot at the depth of the
sounded layer does not fully fall within the photodetector’s field of view. The formula satisfying this requirement
takes the form [27]:

iz (e, / 4mn; ) AB3T, (1= r)? o g \
O Gw z ) )'exp[_ o Z]’ @
2 4
D=2 [bp@)(Z ~2) dz, (5)
0

where 20: is the photodetector’s field-of-view angle; b,(Z2) = 2nf'(n, Z) is the backscattering coefficient;
o(2) = a(Z) + 2b,(2), a(Z) is the absorption coefficient; D(Z) is the variance of the irradiance distribution
in the cross-section of an infinitely narrow light beam after propagating through a water layer of thickness Z;
bAZ) =b(Z) — 2b,(Z) is the forward scattering coefficient, with b(Z) being the total scattering coeflicient; g is the
parameter of the forward section of the scattering phase function, which defined as:

%/ (0) = 2L exp(-q0). (©)

Equation (4) was derived by computing the power of a single-backscattered pulse signal while accounting
for multiple small-angle forward scattering events. This calculation employs a solution to the radiative transfer
equation under the small-angle diffusion approximation as the beam spread function (BSF). Equation (4) in-
corporates the additional term 2D(Z), which quantifies the broadening of both the transmitter’s and receiver’s
effective radiation patterns. This broadening results from multiple forward scattering during the two-way prop-
agation of light through a water column of thickness Z. When b; = const, the function D(Z) can be expressed as:

2
D(Z)= Wblf . (7)

The array of field measurement data collected in the Bechevinskaya Bay allows for the assessment of the ap-
plicability of the lidar equation formulations using Eq. (3) and (4) for describing the backscattered signal power
from the seabed and the water column at a specified depth. The experimental data were processed for seabed
depths of 8 m, 10 m, 12 m, 15 m, and 17 m, recorded at altitudes of 500 m, 700 m, 900 m, and 1200 m. For each
of the four altitudes, sounding points were selected for the specified depths that were spatially close and had
similar values of the lidar attenuation coefficient o, which is dependent on hydrooptical characteristics. It was
also assumed that the seabed reflection coefficient R, at the selected points remains constant. The amplitude
of the echo signal from the seabed P, was determined for each sounding. The lidar data processing method for
determining P, is presented in Section 2.3. For subsequent analysis, the amplitude of the echo signal P, was
averaged over 10 successive measurements.

To evaluate the attenuation of the lidar echo signal from the depth Z, and the length of the atmospheric
segment of the sounding path H, two approximation functions were employed, the forms of which are derived
from the representations of the lidar Eq. (3) and (4). For convenience, we present formulas (3) and (4) in the
following form:

155



Ihyxoe B.A.,|loavdun FO.A), Thumko O.B.
Glukhov V.A., |Goldin Yu.A), Glitko O.V.

L&)
P(H,7)=——""—, 8
(H,2) 7D (8)

£(2)
PH,7))=———"+—"——, 9
D= Hoo+ /0 ©)
fi(2)= %WOAT()@%@ - r)zb,,u)exp[—z | cx(z')dz’] , (10)

w 0
2

fz(H,z)=9§[H+niJ : (11)

2 .3
fg(z)=Fb1z : (12)

For each specified depth z, the dependence of the echo signal attenuation P on the flight altitude is
determined solely by the geometric factor f,(H, z). Consequently, formulas (8) and (9) can be utilized to
approximate the experimental data obtained for given depths z at various sounding altitudes H. The values
of functions f1(z) and f5(z) will be constants of approximation determined by the least squares method.
Figure 3 presents the averaged values of the echo signal amplitudes during Fresnel reflection from the wa-
ter surface P, as well as values of P, for depths of 8, 12, 15, and 17 m, recorded from different sounding
altitudes. The approximation of the experimental data using Eq. (8) is indicated by a blue dashed line,
while the approximation using Eq. (9) is shown in red. In the case of Fresnel reflection from the water
surface P, the approximation curves coincide; however, in other cases, they differ. It is evident that for
depths greater than 8 m, the approximation curve constructed using Eq. (9) provides a better fit to the
field measurement data.

Echo signal measurements were conducted for water layers at depths of 3, 8, 10, 12 and 15 m. The ampli-
tude values of the echo signals were measured at the entrance to the bay, where the seabed depth exceeds 22
m. For different altitudes, sounding points were selected that were closely located in spatial position. Figure

4 presents the amplitude values of the echo signal
400 600 800 1000 1200
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Figure 5 shows the estimates of the magnitude of the function f3(z) as a function of the sounding depth,
obtained for water layers using Eq. (13). The red dashed line represents the approximation of the obtained data
using a function of the type given in (12), which includes a third-degree term in z.
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Fig 5. The assessment of the values of the function f5(z) as a function of
sounding depth, obtained using equation (13)

To assess the contribution of the light intensity distribution variance D(z) to the attenuation of the lidar echo
signal, we consider the ratio of the values of the functions f5(z) and f,(H, z) for different sounding altitudes as a
function of the bottom depth (Fig. 6). It is evident that as the sounding depth increases, the contribution of the
function D(z) becomes significant in comparison to the geometric factor.
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Fig. 6. The ratio of the f,(H, z) and f;5(z) function values for
different sounding altitudes as a function of depth z

The value of f3(z) = 0 is obtained under the assumption that the echo signal is formed due to single scat-
tering from a Lambertian surface located at a depth z, provided that the divergence of the sounding beam 0,
is small and the field of view angle of the receiving system 0, is significantly larger than the divergence of the
sounding beam (i. e., 6, << 0,). In this case, the diameter of the illuminated area on the bottom D,, lit by
the sounding beam, equals the product of the length of the sounding path and the divergence of the sound-
ing beam. This condition is satisfied by Fresnel reflection from the water surface, where the diameter of the
illuminated area is determined solely by the divergence of the sounding beam and is sufficiently small. When
the bottom is at a depth z,, the contribution of multiple scattering along the path from the water surface to
the bottom and back results in an increase in the area on the water surface D, through which the radiation
reflected from the bottom and entering the receiver emerges. With an increase in g, the contribution of mul-
tiple scattering also increases. The size of the area D, becomes larger than the size of the area that falls within
the field of view of the receiver D,. As the sounding altitude increases, the ratio of the diameters of the areas
D,/ D, decreases, which leads to a reduction in the attenuation rate of the lidar echo signal and, consequently,
an increase in the contribution of the function D(z). Similar processes occur when reflecting off water layers
located at fixed depths.

4. Conclusion

The results of field experiments demonstrated that the dependence of the magnitude and shape of the lidar
echo signal on the length of the sounding path when investigating water layers and seabed exhibits a more com-
plex behavior than what is predicted by the lidar Eq. (3) in its conventional form. This complexity is likely due
to the contribution of multiple scattering along the path from the water surface to the sounding object and back,
which causes the scattering of the laser spot at the depth of the sounded layer to not fully fall within the field
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of view of the photodetector. In this case, the introduction of an additional term D(z) into the lidar equation,
which defines the dispersion of the illumination distribution in the cross-section of an infinitely narrow beam of
light that has passed through a water layer of thickness z, allows for a more accurate description of the experi-
mental dependencies obtained. Field experiments are complex and costly, thus Monte Carlo simulation would
serve as an effective tool for verifying the accuracy of the employed form of the lidar equation. Future work in
this area should focus on investigating the influence of the aforementioned effect in relation to the lengths of
atmospheric and underwater sections in waters with varying hydrooptical characteristics.
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