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Abstract

Interannual oscillations in the surface temperature of the Arctic Ocean and the North Atlantic with the southern boundary at
latitude 55° 25" N between 1949 and 2007 are investigated based on the MPIOM (Max Planck Institute Ocean Model) solution.
It is a free surface ocean model based on primitive equations in the Boussinesq and incompressibility approximations. High-res-
olution spectra were estimated via fast Fourier transform with a maximum resolution (Welch’s method). Factor analysis method,
which makes it possible to identify areas with highly correlated oscillations and reduce the study of the characteristics in question to
their analysis in local points, is used to minimize the significant amount of the initial information about monthly average sea surface
temperature fields. Analysis of the main factors made it possible to identify 10 areas with quasi-synchronous variability of temperature
anomalies by including the points correlated with relevant factors with correlation exceeding 0.6. Spectral structure compliance clas-
sification revealed that the areas of the Chukchi Sea, the Hudson Bay, the Irminger Sea, and the Labrador Sea have oscillation peak
similarities for the periods of 5—6 years and 8—9 years. Central and western areas of the Norwegian Sea, the area affected by the North
Atlantic Current, the eastern part of the Norwegian Sea, and some areas of the Kara Sea have similar spectral structure defined by the
peaks at the 11-year and 6-year periods. The Baffin Bay with two main peaks at the 16-year and 5—6-year periods, and the central and
the western parts of the Barents Sea, where oscillations are similar to the ones in the Chukchi Sea at short periods, and to the ones in
the south-eastern part of the Barents Sea and in the eastern part of the Norwegian Sea at 7—8-year periods, stand out significantly.
In some cases, spectrum peaks in different areas appear shifted and attenuated, so presumably the frequency characteristics of the
temperature signal change as it moves across the water area.

Keywords: Arctic Ocean, modeling, fast Fourier transform (FFT), Welch’s method, temperature oscillation, factor analysis,
cluster analysis, spectral structure

YK 551.465

© B. A. Topuaxos', A. IO. Jleopnukoe', C. M. Topoeesa'-?, B. A. Pabuenko', /I. B. Ceun'3, 2024
© Ilepeson ¢ pycckoro: H. B. Muporosa, 2024

"MucruryT okeanonoruu um. I1.I1. Iupiosa PAH, 117997, Mocksa, HaxuMoBckuii rip., 1. 36
2PoccuiicKuil rocy1apCTBEHHBII THAPOMETe0poIoruuecKuii yausepcuret, 192007, Boponexckas yi., .79,
Cankr-IlerepOypr

3SUHcTutyt Anbdpena Berenepa, LleHTp HOMSPHBIX U MOPCKUX MCCIENOBAHUI UMEHU [ eIbMroblia,

27570, bpemepxadeH, Am XannenscxadeH 12., FepmaHust

*vikfioran@yandex.ru

IMPOCTPAHCTBEHHAS CTPYKTYPA BPEMEHHO U3MEHUYNBOCTH
TEMIIEPATYPBI IOBEPXHOCTH APKTUYECKNX MOPEN

Cratbs octynwia B pegakuuio 15.09.2023, nmocie nopadorku 09.12.2023, npunsTa B reuats 02.02.2024

AHHOTAIMA

Ha ocHoBe pemenust monenu MPIOM (Max Planck Institute Ocean Model), npeacraisionieii co60iit Moneb oKea-
Ha cO CBOOOHOI NMOBEPXHOCThIO, OCHOBAHHYIO Ha MPUMUTHUBHBIX YPAaBHEHUSIX B MPUOJIMKEHUSIX ByccuHecka n HecxKu-
MaeMocTH, 3a nepuopa 1949—2007 rr. uccienyioTcsi MEXronoBble KojebaHus TeMreparypbl noBepxHocTtu CeBepHOro
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JlenoButoro okeana u CeBepHOil ATIIAHTUKY C I0XKHOM rpaHuiieit Ha mupoTe 55,25°¢.11. CrieKTpbl BBICOKOTO pa3peliie-
HUST OLICHUBAJMCh METOIOM OBICTpOTO TMpeobpaszoBaHust Dypbe ¢ MaKCUMabHBIM paspelieHrueM (Meton Bemua). st
«CXaTust» OOJIBIIOro 0ObeMa UCXOAHON MHGMOPMALIMU TIOJIeH CpeaHEMECSIYHbIX 3HAUEHUIA TeMITepaTypbl TTOBEPXHOCTH
MODST MCTIOJIB3YeTCsT MeTONl (haKTOPHOTO aHaIM3a, TTO3BOJISIONINI BBIICTUTL PAOHBI ¢ BBICOKO KOPPEITUPOBAHHBIMU
KoJIe0aHUSIMU M CBECTH MCCJIEIOBAaHME pacCMaTPUBAEMbIX XapaKTEPUCTUK K MX aHAJIM3Y B JIOKAJIbHBIX TOUYKAX. AHAIN3
TJIAaBHBIX (DAKTOPOB TIO3BOJIMI BBISIBUTD 10 paiiloHOB ¢ KBa3MCMHXPOHHOM M3MEHYMBOCTBIO aHOMAJTMIA TEMIIEPaTyPhI ITy-
TEM OTHECEHHUS K HUM TOYEK, MMEIOIINX MpeBbIIIaonyio 0,6 Koppesiuio ¢ COOTBETCTBYIOIMMU (hakTopamu. Kiaccu-
(bukaims Mo cooTBETCTBUIO CIIEKTPAIbHOM CTPYKTYPHI ITOKa3aja, yTo paitoHsl YykoTckoe Mope, ['yI30HOB 3aIMB, MOPST
WpmuHrepa u Jlabpagop MMEIOT COBIAJEHUs B MMKaxX Ha Meproaax Kojebanuit 5—6 net u 8—9 jer. CX0XyIo CreKTpaib-
HYIO CTPYKTYpY, OTIpeie/iieMyto TMKaMuy Ha riepronax 6 u 11 jiet, MeIoT paifoHbI LIEHTPaIbHOM 1 3amamHoii yactu Hop-
BEXXCKOTro Mopsi, BiusiHusl CeBepo-ATIaHTUYECKOTO TeUEHMsI, BOCTOYHAsl yacTb HopBexckoro mopst u yyactku Kap-
ckoro Mopsi. OcoOHSIKOM BolaesitoTcss badbrHOB 3a11B, UMEIOIIMIA 1BA OCHOBHbIX ITMKa — Ha repuoaax 16 u 5—6 jer,
W LIEHTpaJIbHasI U 3arnagHas yacTb bapeHlieBa Mopsi, Tie KojiebaHus Ha MaJibIX Teproiax COBMAAAOT ¢ KOJIeOaHUSIMU
B UykoTcKOM Mope, a Ha Tieproaax 7—8 JieT — ¢ KojiebaHUSIMU B I0TO-BOCTOUHOM YacTu bapeHiieBa MOpst 1 BOCTOYHOM
yactu Hopsexckoro mopsi. B HEKOTOpPBIX cllydasix TTMKU CIIEKTPOB B Pa3HBIX paiioHaX IMPOSIBISIIOTCS CO CMEIIEHUEM
1 OCJTabJIeHUeM, T.€. MOXKHO TPEATIONOXNTh, YTO TIPU TIepEeHOCe TeMITepaTypHOTO CUTHAJIa 10 aKBaTOPUU MEHSIOTCS
M €ro YaCTOTHbIE XapaKTePUCTUKH.

Kmouesbie cioBa: CeBepHbIil JIemoBUTHIN OKeaH, MoAeIMpoBaHue, ObIcTpoe ipeobpazoBanus Dypbe, MeTon Benya, Ko-
JebaH’s TEMIIEPATyphl, (aKTOPHBII aHaIN3, KJIACTEPHBII aHaIN3, CIIEKTpabHAasl CTPYKTypa

1. Introduction

The interannual variability of climatic factors in the Arctic Ocean, such as temperature and ice cover area,
shows significant differences in the oscillation periods identified in different areas. Thus, according to [1], the
results of the data processing from the observations in Kola Meridian section make it possible to identify inter-
annual oscillations with the periods of 4—5, 8—10, 12—13, and 15—17 years. At the same time, in the interan-
nual variability of water temperature in the Barents Sea, studied using PINRO data in [2], periods of 6.2, 18.6
and 55.8 years were identified. According to [3], in the area of the North-European Basin, the atmosphere and
ocean circulation periodicity of about 7—8 years was identified, which is formed as a result of the interaction
between the atmosphere, ocean and ice in the system of the North Atlantic and the Arctic Ocean. Weak fluc-
tuations in climate characteristics with the periods of 2—3, 10—12, and 20 years were also identified. A 7.7-year
period fluctuation in the water temperature and surface atmospheric pressure oscillations in the North Atlantic
has been identified [4]. Cycles with the periods of 2.5, 5.1, 8.7, 12.3, and 36.7 years were identified in the air
temperature variability at Svalbard meteorological station in Spitsbergen [5]. A special feature of the Barents
and Kara Seas area is the uneven change in the water temperature and ice cover area. Thus, in [6] it is shown
that the ice cover area of the Arctic Ocean between 1978 and 2018 has significant interannual variability, which
is primarily determined by the changes in the influx of warm Atlantic water from the North-European Basin.
It also has an important trend leading to the rise of water temperature and significant reduction of the ice cover
[7]. However, a decrease in the warm water advection and, accordingly, a decrease in water temperature in the
Barents Sea have been observed since 2016 [8]. In work [9], in the White Sea area, temperature oscillations were
identified for the periods close to 3, 8, and 14 years, associated with El Nifio — Global Atmospheric Oscillation,
North Atlantic Oscillation, and the changes in the North Atlantic Current, respectively, while in the Barents
Sea area, a quasi-15-year temperature oscillation was revealed, which is caused by the heat advection from the
North Atlantic [10].

The above studies based on observational data are not able to describe the spatiotemporal structure of the
Arctic Ocean interannual oscillations due to the small number of and limited access to the data of long-term
observations at the local geographic points or sections.

Currently, attempts are being made to overcome this drawback by using mathematical models of ocean
circulation. For example, in work [11], where seasonal and interannual variations of advective heat fluxes in the
ocean and atmosphere of the Barents Sea area between 1993 and 2012 were studied based on the results of the
MIT regional eddy-resolving ocean model and the ERA-Interim atmospheric reanalysis. The wavelet analysis
and singular spectral analysis methods used by the authors made it possible to identify the cycles with 2—4-year
and 5—8-year periods, which are in good agreement with the observational results. In work [12], mathematical
methods, on the contrary, are used to study the causes and mechanisms regulating the intensity and duration
of empirically identified Arctic circulation regimes, and to explain well-defined decadal changes in the area
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between 1948 and 1996 and in the period of the obvious termination of the circulation regimes quasi-decadal
cycle after 1996. In work [13], using two models of different resolutions (a global one, using the ROM model
complex (regionally coupled atmosphere-ocean-sea ice-marine biogeochemistry model) [14], and a regional
one, MITgcm — Massachusetts Institute of Technology general circulation model [15]), a solution was ob-
tained that made it possible to identify the ranges of the 3 main oscillation carrier frequencies, corresponding to
the periods of 1.0—3.6, 3.9—5.8, and 6.3—10.5 years.

Thus, it is obvious that in different regions of the Arctic Ocean climatic factors have strong variability,
because they are defined by both global and regional mechanisms with a significant number of feedbacks,
and many features of interconnections remain understudied [16]. However, the influence of feedbacks and
their intensity can be investigated by analyzing time series data characterizing climate fluctuations in the
Arctic Ocean.

The purpose of this work is to identify the main interannual water temperature oscillations and to assess wa-
ter spatial structure in the Arctic Ocean and the North Atlantic up to the southern boundary of the basin, located
at latitude 55° 25’ N, based on average monthly water temperature data obtained as a result of calculations using
the regional Earth system model ROM (regionally coupled atmosphere-ocean-sea ice-marine biogeochemistry
model) [14]. To analyze long-period oscillations of the Arctic Ocean, model-averaged monthly averages were
used, interpolated onto a uniform grid with a step of 0.5°in latitude and longitude. High-resolution spectra were
estimated using fast Fourier transform method with maximum resolution, which increases spectral resolution
and thus enables more accurate detection of spectral density peaks at periods, which are not multiples of the
total length of the original record.

2. Methods and Approaches
2. 1. Description of the models and methods used

The analysis is based on average monthly water temperature data obtained from simulations using the
ROM [14]. The oceanic component of the ROM is the coupled (ocean-sea ice) MPIOM (Max Planck
Institute Ocean Model) [17]. MPIOM is a free surface ocean model based on primitive equations in the
Boussinesq and incompressibility approximations. The model is implemented on an orthogonal curvilinear
C-grid [18]. The ocean MPIOM grid covers the entire World Ocean and has high resolution in the North
Atlantic and the North-European shelf. The horizontal resolution gradually changes from a minimum of 5
km in the North Sea to a maximum of 220 km in the Antarctic. Vertically, the MPIOM grid has 30 z-lev-
els. Atmospheric data from the NCEP/NCAR reanalysis [19] for the period between 1949 and 2007 are
used as boundary conditions on the sea surface. In z-coordinate climate models that explicitly reproduce
tidal dynamics, such as MPIOM, the top layer is selected considering the maximum possible tidal height.
Thus, the thickness of the upper layer in this experiment was 16 m, and the depth to which the sea surface
temperature (SST) is tied was 8 m. In other words, the model SST is the temperature of the upper 16-me-
ter layer of the model. This temperature is used for comparison with the data from observations on the sea
surface. Therefore, everywhere including the areas covered with ice, the SST is the water temperature in the
specified upper layer.

The tidal influence on the ocean in the model is obtained from the total ephemeris luni-solar tidal potential
[20]. Further details on the model settings, as well as comparison of calculation results with observations are
presented in [14, 21].

To analyze long-period oscillations of the Arctic Ocean, model monthly averages are used, interpolated onto
a uniform grid with a step of 0.5° in latitude and longitude. At the same time, the southern boundary of the basin is
located at latitude 55° 25’ N. Thus, the initial data are matrices of 80 x 720 values, from 55° 25’ N to 89° 75’ N and
from 179° 75" Wto 179° 75" E, at 708 points of the time series from January 1949 to December 2007.

High-resolution spectra were estimated via fast Fourier transform with a maximum resolution. This ap-
proach is based on the following idea. Each observation record of any hydrological characteristic, even one
continuously varying in time, has a finite length and finite time resolution and cannot be represented by a
Fourier integral S(f) in which fis a continuously varying frequency. It only can be represented by a finite series
of Fourier coefficients S(f), where f is from a discrete sequence of frequencies corresponding to harmonics that
are multiples of the total record length. As a result, the Fourier amplitude of harmonics that are not multiples of
the total record length may be underestimated if this amplitude differs significantly from the ones of nearby har-
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monics. To eliminate this effect, you can use the Welch's method proposed in [22], which consists in repeated
calculating the periodograms that remain after successive reduction of the initial record. Subsequently, all such
periodograms are combined and, if the periods coincide, are averaged. This increases the spectral resolution and
thus makes it possible to more accurately locate spectral density peaks at periods that are not a multiple of the
original record total length.

Maximum resolution spectra are built by successively reducing the time series length to the half of its origi-
nal length, since this produces the most continuous estimates of spectral density for all frequencies. Spectra are
evaluated first for the series of length N: (1,..., N); then for 2 series of length N-1: (1,..., N-1) and (2,..., N);
then for 3 series of length N-2: (1,..., N-2), (2,..., N-1), and (3,..., N), etc. up to N/2 series of length N/2:
(1,..., N/2), (2,..., N/2+1), ..., (N/2,..., N). Then all the obtained spectra are combined into one by ordering
them by frequencies and averaging when the frequencies coincide [23].

Using this method, spectra are estimated not only for the total record length, but also for gradually reduced
time series, which is followed by combining all obtained periodograms.

2.2. Selection of representative points

Studying the temporal variability of hydrological characteristics throughout the entire Arctic Ocean
requires processing a large amount of information. To minimize this amount, the work uses a multivariate
statistics method such as factor analysis [24], which makes it possible to identify areas with highly cor-
related oscillations and reduce the study of the characteristics under consideration to their analysis at local
points reflecting these areas. The method was applied to the monthly mean SST fields obtained from the
ROM model.

Seasonal variability was removed from each point of the SST field by subtracting the long-term average
annual variation. The obtained SST anomalies (SSTA) were assessed by the value of the standard deviation.
Points with standard deviation less than 0.001 °C (in the central zone of the Arctic Ocean) were excluded. For
the remaining monthly SSTA values for 59 years (from 1949 to 2007) an analysis of the main factors was carried
out at 708 points. The convergence of the matrix decomposition presented in Table 1 for the first 10 factors
demonstrates their total variance equal to 52.4 % of the entire matrix variance.

Variance redistribution by the second rotation of the factor axes made it possible to identify the areas with
quasi-synchronous SST variability by assigning to them points that have a correlation with the corresponding
factors, exceeding 0.6. As a result, the basin was divided into 10 areas (Fig. 1), where the SSTAs can be con-

Table 1
Convergence of factor decomposition before the second rotation for monthly SSTA
at 708 points of the Arctic Ocean for the period between 1949 and 2007
Factor number Eigenvalue Dispersion,% Cumulative dispersion, %
1 150.9 21.3 21.3
2 54.7 7.7 29.0
3 35.1 5.0 33.9
4 28.7 4.1 38.0
5 21.9 3.1 41.1
6 21.4 3.0 44.1
7 16.4 2.3 46.4
8 14.8 2.1 48.5
9 14.4 2.0 50.5
10 13.3 1.9 52.4
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sidered highly intercorrelated. Points in the central and eastern parts of the Arctic Ocean have SSTA standard
deviation less than 0.001 °C due to the presence of sea ice, so these areas were excluded from the analysis. Re-
member that the selected 10 areas represent only 52 % of the total SSTA variance and characterize large-scale
fields and oscillations. The points not included in any of the areas reflect the remaining 48 % (2,294 factors) —
smaller and more local oscillations. They were not considered.

As can be seen from the Fig. 1, the areas almost coincide with their geographical features (Table 2).

(EL R X XX XX X J
&

Fig. 1. Factor analysis results: areas 1—10 with quasi-synchronous

interannual SST variability for the period between 1949 and 2007

according to the ROM model. The positions of the points under
study (P1—P10) are indicated with yellow dots

Table 2
Accordance of the selected areas to their geographical features
Area number Geographic reference Abbreviation
1 Irminger Sea and Labrador Sea 1L
2 South-eastern part of the Barents Sea SEB
3 Central and western Norwegian Sea WNS
4 Area of influence of the North Atlantic Current 55—65°N NA
5 Central and western Barents Sea CWB
6 Baffin Bay BB
7 Chukchi Sea ChS
8 Eastern Norwegian Sea ENS
9 Parts of the Kara Sea KS
10 Hudson Bay HB
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3. Results
3. 1. Water temperature oscillations at the stations in the Kola Meridian section

As was shown in [13], at the points of the Kola Meridian section, the amplitudes of seasonal and interannual
oscillations are of the same order of magnitude. Thus, the contribution of interannual temperature oscillations
to the overall pattern of oscillations turns out to be significant.

The initial comparison of the results was performed based on the data from the Kola Meridian section [25].
Available data at the stations of the Kola Meridian section (33° 50’ E) were spatially averaged for stations 3—7,
point K3—7 was assigned to station 5 (71° 50’ N). Calculations were made both on the basis of fast Fourier
transform (FFT) and the Welch’s method. Before proceeding to the result analysis, it is important to note,
firstly, that the calculation based on the Welch’s method gives an unnecessarily large number of small peaks,
which complicate the analysis. To eliminate this feature of the solution and smooth the obtained spectrum, a
Hamming filter with a window of 31 was applied to it [26]. Secondly, since the length of the original series does
not exceed 59 years, it is reasonable to consider only interannual oscillations with periods in the range of no
more than 20 years. The calculation results based on FFT and the Welch’s method with subsequent Hamming
filtering are presented in Fig. 2.

In the existing results of data processing from the observations in the Kola Meridian section, presented, for
example, in [1], the periods of 4—5, 8—10, 12—13, and 15—17 years are distinguished in interannual oscillations.
In the spectrograms obtained from processing longer series of data from the same section (Fig. 2), oscillations
in the ranges of 2—3, 4—5, 6.5—7.5, and 12 years are distinguished. Oscillations at the periods of 8—10 years are
not distinguished in our calculation. Moreover, a comparison of the results obtained by different methods shows

that the FFT gives a spectrum picture with a smaller number of peaks compared to the spectrogram obtained
using the Welch’s method. Thus, in the FFT spectrogram there is no peak at the period of 12 years, and most of
the FFT peaks that coincide in both calculations are somewhat shifted towards longer periods. A more detailed
analysis of the spectra at the frequencies of 1—2 years generally confirms the general pattern identified for the
FFT and Welch’s method spectrograms, and also demonstrates a slightly better reproduction of Chandler oscil-
lations with a period of 14 months in the case of using the Welch’s method.

(e o o oo e o e O O s s | T 7 T T T T T T T
_— Fast Fourier Transform
o —— Welch's method

02 / . i\ B
\i B \. ‘f\‘f\
7 ! i
e \ ./ 71\ !

0.15 = \ P o \ \ =
2 l\ 'r = ]
g \ /\ \

8 \ - |
| | p
01 '\\ ! _
1 "‘l i ‘
- WAVART '.l r
0.05 — ' , =
Iy U
0|||1|11|1||||1L|||11||1|I I e | I L I 1 I 1 I |
20 14 10 7 5 3 2 1 0.5
Period, year

Fig. 2. Oscillation spectra of temperature anomalies on the K3—7 station of the «Kola» section, obtained via fast Fourier
transform (the violet line) and the Welch’s method (the red dotted line) for 0.5—20-year periods

Thus, it can be argued that spectrograms calculated using the Welch’s method provide a more detailed and
better picture than those calculated using standard FFT.

3.2. Analysis of oscillations in various areas of the studied part of the ocean

As shown in Section 2.2, in the studied part of the ocean, 10 areas with quasi-synchronous SST variability
can be identified. Spectral analysis of SSTA time series using the Welch’s method was performed at one point in
each area, which had the maximum correlation with the corresponding factor (points are shown as asterisks in
Fig. 1). The spectra calculated for all 10 areas, combined on one diagram, are presented in Fig. 3.
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Fig. 3. Oscillation spectra of temperature anomalies, obtained via Welch’s method at the 1—20-year period

in each of 10 areas

As you can see, it is quite difficult to identify oscillations with periods common to all areas. Therefore, to
generalize the picture based on the spectrum peaks, oscillations were identified in different period intervals,
presented in Table 3. According to the table, the ‘noisiest’ areas with the largest number of spectral compo-
nents are areas 2, 5 and 7 (the southeastern part of the Barents Sea, central and western parts of the Barents
Sea, the Chukchi Sea, respectively). This can be explained by the fact that the Barents and Chukchi Seas
located on the shelf are characterized by strong transformation of waters, especially in the surface layer. The
frequency structure throughout the Arctic zone is dominated by oscillation periods of 5—6 years, 3—3.3 years
and 8—9 years.

To identify groups of areas that have oscillations of close periods using Table 3, cluster analysis was per-
formed with the Hamming metric. The results are presented in Fig. 4.

Table 3
Peaks in the given period intervals
Area number Period, years
and its Sum
abbreviated | 6|1y |y | 809 | 7 | 5.6 | 4-5 | 3.4 | 3-33 | 23 | ofcases
name
1IL - - — + - + — + — — 3
2 SEB — + — + — + _ + + _ 5
3 WNS - - + - - + - - + - 3
4 NA - - + - - - . + - - 2
5 CWB + — — — + _ + _ + + 5
6 BB + - — — — + — - - - 2
7 ChS — — - + - + + — + + 5
8 ENS — — + + — — — - — - 2
9KS — — + - - + + — + - 4
10 HB - — — + - + - + + — 4
Sum of cases 2 1 4 5 1 7 3 4 6 2
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Fig. 4. Dendrogram of the spectral structure compliance classification for SST
areas for the period 1949—2007 according to the ROM model. The vertical axis
shows the probability of non-compliance

Spectral structure compliance classification revealed that areas 7, 10, 1, and 2 (the Chukchi Sea, the Hud-
son Bay, the Irminger Sea, the Labrador Sea, the southeastern part of the Barents Sea) are similar, primarily by
the coincidence of oscillations at the periods of 8—9 years and 5—6 years (Fig. 5a). Areas 3, 4, 8, and 9 (central
and western parts of the Norwegian Sea, the area affected by the North Atlantic Current at 55—65° N, the east-
ern part of the Norwegian Sea, and some areas of the Kara Sea) have a similar spectral structure, determined
by the periods of 11 and 6 years (Fig. 5b). While the first group of areas is characterized by cold surface waters
and their transformation associated with further cooling and interaction with the ice cover, the second group of
areas is obviously associated with Atlantic waters entering the Arctic Ocean from the south.
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of 2.5 years. In the Baffin Sea (area 6), the first oscillation is even shorter, with a period of 3 years (Fig. 6a).
Another oscillation in the central and western parts of the Barents Sea (area 5) with a period of 7.2 years ex-
tends to a period of 7.9 years in the south-eastern part of the Barents Sea (area 2), and in the eastern part of the
Norwegian Sea it is already observed with a period of 8.1 years (area 8) (Fig. 6b). Thus, we can put forward a
hypothesis that the frequency characteristics of the temperature signal change as it moves across the water area.
However, this hypothesis requires additional research.

4. Conclusions

1. Comparison of the results obtained using the standard FFT and the Welch’s method, performed on the
data from the Kola Meridian section, demonstrates that the FFT gives a spectrum picture with a smaller num-
ber of peaks, compared to the spectrogram obtained using the Welch’s method. Thus, in the FFT spectrogram
there is no peak at a period of 12 years, and most of the FFT peaks that coincide in both calculations are some-
what shifted towards longer periods.

2. In the water area under consideration, 10 areas with quasi-synchronous SST variability can be identified.
It turned out that it is quite difficult to identify oscillations with periods common to all areas, but it is possible
to identify areas with coinciding oscillations of different periods. The ‘noisiest’ areas with the largest number of
spectral components are areas 2, 5 and 7 (the southeastern part of the Barents Sea, central and western parts of
the Barents Sea, the Chukchi Sea, respectively). The frequency structure throughout the Arctic zone is domi-
nated by oscillation periods of 5—6 years, 3—3.3 years and 8—9 years.

3. Spectral structure compliance classification revealed that areas 7, 10, 1, and 2 (the Chukchi Sea, the
Hudson Bay, the Irminger Sea, the Labrador Sea, the southeastern part of the Barents Sea) are similar, primar-
ily by the coincidence of oscillations for the periods of 8—9 years and 5—6 years. Areas 3, 4, 8, and 9 (central and
western parts of the Norwegian Sea, the area affected by the North Atlantic Current at 55—65° N, the eastern
part of the Norwegian Sea, and some areas of the Kara Sea) have a similar spectral structure, determined by the
periods of 11 and 6 years.

4. Particularly notable are the Baffin Bay area (area 6), which has two main peaks — at the period of
16 years and at the 5—6-year period common to the Arctic Ocean, and the area of the central and western
parts of the Barents Sea (area 6), in which SST oscillations at short periods (2.3 years, 3.3 years, 4.5 years)
nearly coincide with oscillations in the Chukchi Sea area (area 7), and oscillations at the periods of 7—8 years
nearly coincide with oscillations in areas 2 and 8 (the southeastern part of the Barents Sea, the eastern part
of the Norwegian Sea).

5. In some cases, spectrum peaks appear shifted and attenuated. Thus, we can put forward a hypothesis that
the frequency characteristics of the temperature signal change as it moves across the water area. However, this
hypothesis requires additional research.
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