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Analysis of the Rossby wave dynamics shows when waves interact with shear currents vertical focusing of the modes
occurs. Due to the inhomogeneity of the background flow, Rossby waves are captured by the current, and there is a com-
pression of the modes on vertical horizons. For the vertical mode, instead of the classical trigonometric cosine, strongly
localized solutions appear in the form of exponentially modulated Hermite polynomials. Qualitatively, the situation can be
described as follows: an inhomogeneous background current acts like a kind of parabolic antenna. The wave, falling into this
parabolic trap, begins to reflect off the narrowing walls of the paraboloid, while the vertical transparency zone narrows and
the wave’s progress towards the center of the paraboloid slows down more and more. In the linear formulation, this process
lasts infinitely long, while the distance between adjacent reflection points from the paraboloid mirror gradually decreases.
There is a mathematical description of this phenomenon for internal waves. Since there are no fundamental differences
between internal waves and Rossby in the vicinity of the focus, the mathematical part of the work for internal waves can also
be transformed for Rossby waves.

In this paper, in terms of the Fourier integral, we construct a two-dimensional analytical solution of the reference equa-
tion for the vertical focusing of a monochromatic wave in the vicinity of the focus. Using the degenerate hypergeometric
function of the complex variable, we show the identity of this solution with the solution of the reference equation obtained
in previous studies. We find the asymptotic behavior of the solution in the far zone by the stationary phase method. Using
exponentially majored Hermite polynomials, we show the correct two-dimensional crosslinking of the obtained solution,
which has in the form of a degenerate hypergeometric function of a complex variable, happens with the WKB solution in
the far zone. We show the question of absorption in the focal zone is not unambiguous, and therefore both situations are
possible: both the passage and the reflection from the feature.

Keywords: Rossby waves, parabolic antenna, trap, WKB approximation, crosslinking, asymptotics, focal zone, transparen-
cy, shadow regions
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AHanu3 nuHaMUKK BoJiH PoccOu rokasbiBaeT, 4YTo Mpu B3aUMOACHCTBUM UX CO CABUTOBBIMU TEUYEHUSIMU BO3ZMOKHBI
PEXMMBI, KOTIIA U3-32 HEOTHOPOMHOCTU (DOHOBOTO TeueHMs BOJIHBI PoccOu 3axBaThIBAIOTCS TeUEHUEM, TTPU 3TOM MPO-
HUCXOOUT BepTUKAIbHASI (POKYCUPOBKA — CXaThe MOIbl HA HEKOTOPOM BEPTUMKAJIbHOM TOpU30HTE. 7151 BepTUKaTbHOM
MOJIbI BMECTO KJIACCUYECKOTO TPUTOHOMETPUUECKOTO KOCUHYCA MOSIBIISIIOTCS CUJBHO JIOKATM30BaHHbIE PEIIeHUS B BUIE
3KCITOHEHILIMAJIBHO MOy TMPOBAHHBIX MOJMHOMOB DpmuTa. KauecTBeHHO CUTYallli0 MOXHO OTHUCATh CJAEIYIOIIUM 00-
pazoM: HeoTHOpPOIHOe (DOHOBOE TeUeHHUe AeCTBYeT Kak Hekasl Tapabonnyeckas aHTeHHa. BoiHa, momnanas B 3Ty mna-
paboIMuecKylo JOBYIIKY, HAUMHAET OTPaxKaThCsl OT CYXalOIIMXCsl CTEHOK Mapabosionaa, Mpu 3TOM BepTUKAIbHAsI 30HA
MPO3PavyHOCTHU CYXKAeTCsI, a IPOABYKEHME BOJIHBI K LIEHTPY Mapabosionaa Bce bosee u 6osiee 3amenisieTcs. B muHeitHoi
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Parabolic traps of Rossby waves waves in the ocean

MOCTaHOBKE 3TOT IMPOLIECC AIUTCS OECKOHEUHO JI0JITO, MPU 3TOM PACCTOSIHME MEXIYy COCEIHUMU TOYKAMU OTpaxKeHHUsI
OT 3epKaJjia napabojounaa mocTerneHHo cokpaiiaercs. Jjist BHYyTpeHHUX BOJIH TaKO€ YpaBHEHUE B OKPECTHOCTU (pOoKyca
cymiectByeT. [TockosIbKy B OKpeCTHOCTH (hOKyca HET MPUHLIMITHAIbHBIX OTJIMYMIA BHYyTPEHHMX BOJIH OT PoccOu, To mare-
MAaTUYECKYIO YacTh pabOThI JIsI BHYTPEHHUX BOJIH MOXHO TpaHCc(hOpMUPOBaTh U AJist BojaH Poccou.

B TepmuHax unrerpaiia @ypbe NOCTPOCHO IByMEPHOE aHAIMTUYECKOE PELIEeHUE 3TaJJOHHOTO YpaBHEHUSI JIJIs BEPTH -
KaJIbHOM (POKYCUPOBKM MOHOXPOMATUYECKOM BOJIHBI B OKpecTHOCTU (poKyca. [TokazaHa MIEHTUIHOCTb 3TOrO PEIeHUs
C pellleHUeM 3TaJOHHOTO YPAaBHEHUSI B TEPMUHAX BBIPOXIACHHOM T'MIEpreoMeTpUUecKoil (PyHKIIMU OT KOMILJIEKCHOTO
MepPEeMEHHOTO, MTOJIYYEHHOI0 B IIPEAbIIYIINX UCCIEA0BAHUIX. MeTOoOM CTallMOHAPHOM (ha3bl HalileHa aCUMIITOTUKA pe-
1IeHus B JaibHeli 30He. [Toka3aHo, 4TO KOppeKTHas IByMepHas CIIMBKA TOJIy4eHHOTO pellieHUsI B BUIE BbIPOXICHHOI
TUIIePreOMeTPUUECKOM (PYHKILIMY OT KOMIUIEKCHOTO TiepeMeHHoro rpoucxonut ¢ BKb-pelieHnem B qanbHeii 30He B Tep-
MWHaX 9KCITOHEHIINAIbHO MaXKOpUPOBaHHBIX MMOJTMHOMOB DpMuTa. ITokazaHo, 4To BOITPOC O MOIVIOLIEHNH B (hOKAIHbHOMK
30HE HE HOCUT OJHO3HAYHBII XapaKTep, U [IO3TOMY BO3MOXHBI 00€ CUTYallUK: KaK MPOXOXICHKUE, TaK U OTPaKEHKUE OT
OCOOEHHOCTH.

KoueBsie ciaoBa: BonHbl PoccOu, mapabonndeckast aHTeHHa, JioBylika, BKb-npubnuxkeHue, ciimBKka, aCUMOTOTUKA,
¢ okanbHas 30Ha, 00JIaCTU IMTPO3PAYHOCTU 1 TEHU

1. Introduction

One of the methods for studying the dynamics of waves in the ocean is called the “Vertical modes — hori-
zontal rays” method [1]. Since the horizontal scales of Rossby waves are from tens to hundreds of kilometers,
this approximation works well in the open ocean. If the stratification is assumed constant and the topography
and baroclinic background currents are not taken into account, then the vertical mode of Rossby waves is deter-
mined by one stratification and does not depend on the -parameter. In this regard, the Rossby wave becomes
similar to an ordinary internal wave, and its vertical mode is an ordinary trigonometric function with the classi-
cal quantization of the eigenvalues of the Sturm-Liouville problem. In this formulation, the determining factor
is the horizontal heterogeneity of the large-scale flow. Horizontal flow changes are the leaders in the task. First,
a geometric skeleton is drawn, and only then a vertical mode is built at each point in space. In this case, the ver-
tical mode is a kind of follower, strictly following the horizontal propagation of the ray [2]. However, along with
the similarity of the problem sets, there are both qualitative and quantitative differences for internal and Rossby
waves. The first difference between Rossby waves and internal waves is that there are two qualitatively different
scenarios for the evolution of the rays of Rossby waves, which is essentially a consequence of the presence of the
[-parameter in the problem, both in the case of a zonal background flow [3] and non-zonal flow [4]. For the
non-zonal case, a qualitatively new scenario appears, associated with such a phenomenon as “overshooting”,
i.e., the diving with adhering of the Rossby wave under the critical layer [5]. The second and most significant
difference between internal waves and Rossby waves is as follows. For internal waves, adding baroclinicity to
the background flow does not qualitatively change the scenario of the evolution of the wave packet. The infinite
countable spectrum of the Sturm-Liouville boundary value problem with a trigonometric set of eigenfunctions
smoothly transforms into a new infinite countable spectrum, but already with eigenfunctions in the form of
exponentially dominated Hermite polynomials. In this case, of course, new phenomena such as vertical focus-
ing and “non-dispersive” focusing appear [6]. But for internal waves, the focal point remains a kind of “black
hole”, while the rays are the “leaders”, and the vertical modes are “strong followers” with a certain secondary
role as vertical focusing and “non-dispersive” focusing [6].

For Rossby waves, the situation is qualitatively different, while different authors, using different approaches,
come to the following qualitative conclusion. Considering the baroclinicity of the background current has a very
strong effect on the spectrum of the vertical problem. In [7, 8], situations were observed in numerical calcula-
tions, when, depending on the direction of the wave, only a few first modes exist, or even a vertical mode may
not exist at all.

The authors of [9], within the framework of a two-layer model, have convincingly proved that long baro-
clinic Rossby waves are unstable. This is shown on the basis of a laboratory experiments and a generalization of
these results for the case of various media is also given in [10]. It is important to note that this again results in the
stratification of the results into two cases: zonal and non-zonal. If for a zonal flow there are some upper bounds
on the growth rates of instability [11, 12], then for the non-zonal case, due to the non-Hermitian operator for
linear Rossby waves on a non-zonal flow, no theorems work [13]. Therefore, it is necessary to be extremely
careful when generalizing the idea of a focal singularity to the case of Rossby waves. All this is due to the fact
that the vertical mode of Rossby waves is extremely capricious and is no longer a blind follower of the ray in the
horizontal plane.
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Wave dynamics analysis Rossby in the presence of shear currents shows that regimes are possible when,
due to the inhomogeneity of the background current, Rossby waves are captured by the current, while vertical
focusing occurs i.e. compression of the mode at a certain vertical horizon. For the vertical mode, instead of
the classical trigonometric cosine, strongly localized solutions appear in the form of exponentially modulated
Hermite polynomials. Such solutions are well known for internal waves [ 14] and have also been constructed for
Rossby waves [15].

The situation can be qualitatively described as follows. An inhomogeneous background current acts like a
kind of parabolic antenna. The wave, falling into this parabolic trap, begins to reflect from the narrowing walls
of the paraboloid, while the vertical transparency zone narrows and the movement of the wave towards the cen-
ter of the paraboloid slows down more and more. The distance between adjacent points of reflection from the
paraboloid mirror gradually decreases. This process in a linear setting lasts an infinitely long time. Since this re-
sult is obtained in the WKB approximation, a reference two-dimensional equation is additionally constructed.
For internal waves, such an equation in the vicinity of the focus and its analysis were performed in [16]. Since
there are no fundamental differences between Rossby waves and internal waves in the vicinity of the focus (the
only difference is the estimation of dimensionless parameters), so it makes sense to present the mathematical
part of the work for the already known reference equation for internal waves.

2. Statement of the problem. Two-dimensional reference equation. Baroclinic case

Consider a two-dimensional reference equation in the vicinity of the focus [16, equation 2.5]:

2
y  z 2
Yo+ =+ ¥ +—¥ =0, (D
2 yy y
“ [Ly Lz} Ly

where (x, y, z) is a rectangular coordinate system, ¥ — current function L, and L, are the lengths of inhomo-
geneities in y and z. Following the standard scheme, we will seek solutions localized in a small vicinity of some
level along the vertical coordinate and exponentially decaying outside this level, where the following notation is
introduced for the case of internal waves:

vVQ V2N
1w g, LY Y 2
L Y 2 Q N
Y 4

where Q = ® — kU, o is a frequency, k is a zonal wavenumber, U(z, y) is an inhomogeneous horizontal back-

ground shear flow, N 2(z) = —gdiln po(2), po(z) is a density. The value of all derivatives is taken at the focal
z4

point.

The capture of Rossby waves by a parabolic trap created by a flow in a stratified fluid can be qualitatively
represented as follows (Fig. 1):

In the literature, it is often said that Fourier analysis does not work in inhomogeneous media, but this is not
entirely true. Let us show that Fourier analysis can work, for example, on linear shear flows.

a) Reflection - no modes
shadow
rays
\ e [/ \ /
shadow shadow
VAV VAV AV AV AV VAN /7SS S VAV A AV AV
bottom bottom

Fig. 1. Parabolic antenna: ¢ — free wave mode in the absence of flow; b6 — mode at L, < 4L, (interaction with the flow);
¢ — reflection of waves from the flow at absence of modes (based on [16], as well as equation (13) of this work)
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So, we seek the solution of Eq. (1) in the form of the Fourier integral, in this case we restrict ourselves to the
beginning by the upper part of the integral

k V2,0 TG k,l,z,0 exp(ily)dl, 3)
0

where / — meridional wave number, G(k, /, z, ®) is a Fourier transform. Taking the whole integral or only the
upper (lower) part of the integral is actually a very important question, the discussion of which we will postpone
until the final part of the work. We use the properties of the Fourier transform:

¥ G, ¥, »ilG, ¥, >-12G, y¥, - 1(120)1 (4)

Substituting expansion (3) into equation (1) and, taking into account (4), for the Fourier transform G we obtain
the following equation:

12 2 12
G ——G —G, =0. 5
R ®)

Equation (5) is not a separable equation. To make it so, we perform the following change of variables
(z,l) - (n,(p), where

712
=i o=l 6)
Zz
The Jacobian of the replacement is
a(n,cp) _g1/2
A1/, (7)
o)

Note that equations (6) and (7) contain ///2. Technically, it is this fact that requires considering only one
of the parts of the Fourier integral. For simplicity, we first chose the upper, positive part of the integration to
remove the square root question.

The question arises: why should one choose such a change of variables? The answer is contained in [14],
where a solution was constructed in the WKB approximation. In fact, no reasoning about self-similarity is
needed, since in a certain sense all “self-similarity” is reduced to a simple change of variables of the form (6).

In new variables (n, @) equation (5) takes the form of an equation with separable variables:

.nL
G =G =i =Gy = LZG =0. (8)
y y

Next, we look for a separable solution in the following form:

G(n, 0) = HM)H9). )
For H(n) we obtain the following equation
nL 2
Hy, - 2; ~(n” +10) H =0, (10)

where y is a constant separation. Further, the term with the first derivative in equation (10) is removed by the
following replacement

_ L o
H(n)-P(n)exp[zSL n j (11)

y

For function P(n) we obtain the following equation

L L
Pnn+[ [1_16L2J MO+I4ZJP:0' (12)
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Recall that we are looking for solutions localized in the vicinity of the level (z = 0). Equation (12) shows that
the coefficient at 2> must be positive, therefore, we obtain the following condition for the existence of localized
solutions

2
1-—|>0=0<|L,|<4|L,|. (13)
s ool

Condition (13) says that the branches of the parabola, which limits the inner region of transparency from
the outer region of the shadow, should be practically parallel to each other (Fig. 2). Otherwise, the vertical mode
will not form, and the wave will not approach the critical point for an infinitely long time. Note that if condition
(13) is not satisfied, then formally other modes of transformation of the solution are also possible.

Estimation of the parameters for internal waves shows that if we take the scales that are used in [16], then
a very good separation of these values is obtained (L, < 4L,), and this indicates that the concept of a parabolic
trap is justified from the point of view of physics.

Let us define the quantum values of the separation variable p, (see [6, 17]):

172
(2m+1)— iLz /1= L2 m=0,1,2 (14)
= Mo 4Ly 16L2 s =Y L.
from where we find the eigenvalues:
1/2
L1, 8 1 16L,
Ho=—=|—i—=|m+=||; 0= 5 , m=0,1,2,... (15)
L[4 2 2 L
4
and own functions:
1/4 B 1/2
© L2 n2 L2
P(n)= H 1-—= exp| ——| 1-—= , m=0,1,2,..., (16)
() ,,,go " n[ 16Li} 2[ 161,

where H,, — Hermite polynomials.
We now turn to the definition of the second factor F(¢) in solution (9). From formula (8) we obtain the
following equation:

L
i 2R g F =0, (17)
y

—

light %hadow \_
shadow \ light
. A B\

light

y

shadow

/77 /7SS S/

bottom

Fig. 2. Parabolic trap: antisymmetry of transparency and shadow areas at L, <4L,.
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The solution to equation (17) has the following form:

L
Fo)=¢", n=—ip,—*. (18)
LZ
Finally, we get the following eigenvalues:
I .8 1
=—+i—|m+—| 19
h=gtiz (m 2) (19)
Substituting all found composite solutions into the original integral (3), we find the eigenfunctions:
1/4
w o 212 2
‘P(k,y,z,m): Z J.l“ H VR
m=0 0 "o 161}
1/2
2 L2 2
X exp _zl 1- z2 -exp|i!/ y+z— dl, (20)
2L, 16L; 8L,

where A(k, ®) — some constant that determines the spectral density of the initial state. Further, the obtained
eigenfunctions (20) can be reduced using simple transformations to a degenerate hypergeometric function of
some complex argument (Appendix). Note that it is the integral notation (20) that is preferable for finding
the asymptotics of eigenfunctions. Although the constructed eigenfunctions (20) are functions of two physical
variables (z and y), the integral for the eigenfunctions is one-dimensional, which makes it possible to use the
stationary phase method [6].

We write out the imaginary part of the integral (20) in the following form:

2
exp[zl(y+8zTJ+lg(m+;)lnl]. 21

Differentiating (21) concerning the variable / and equating the expression in square brackets to zero, we obtain
the equation for the point /..

2
yr —i[m+1]. (22)
s.,  2,\""2

Next, we rewrite the equation (22) in the following form:

8(m+;j
[, = (23)
Z
2[y+8L J

It is easy to see that the obtained equation (23) is a kind of generalization of the short-wavelength WKB
asymptotics of the dispersion relation /, = y~!. Then the second derivative of the phase with respect to the wave
number is proportional to /. 2 , therefore, the root to the minus of the first power of the second derivative is pro-

portional to lg . Finally, the asymptotics of the eigenfunctions in the vicinity of the critical point will have the
following form:

/172 I 174 2 Iz 172 5 !

&, z .

qjl(ksy,Z,(O):A(ka(D) ZOIC H, L1C/2 [1_1622 } eXp| — 2L, {1 1622J 'eXp|:15[m +5]} (24)
m= y y

Analyzing asymptotics (24), we can say the following: the asymptotics of the solution to the reference equa-
tion exactly coincides with the WKB solution with the vertical mode in the form of Hermite polynomials,
majorized by the Gaussian function [14], and gives the classical power of 5/4 for the amplitude of the vertical
velocity. If in [16] they talk about a certain mode, then we argue that this is not their vertical mode in the form
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of a WKB solution along the vertical coordinate, but a completely different mode, which was constructed in
[14]. The constructed solutions are functions not of the variables (z, ), but of some curvilinear variables, which
have the following form:

Yo
8L,

Zz Z
(}’,Z)—> [J“ra} W . (25)
Z

Thus, in a sense, there is a curvature of space in the vicinity of the focal point.

Note that this “curvilinearity” was also seen when solving the problem in the WKB approximation, where
<
N

ymptotics of one-dimensional integrals do not give any qualitatively new results different from WKB-solutions,
except for condition (13), which is satisfied with a large margin.

the following change of variables was formally performed: (y,z) - ( Vv, J Therefore, by and large, the as-

3. Discussion and conclusions

So, the first result in this work is the mathematically correct matching of the asymptotics of the reference
solution in the far zone with the WKB solution in terms of the Hermite polynomials in the vertical coordinate.
The solution of the reference equation in terms of a degenerate hypergeometric function of a certain complex
variable [16] is matched not with the asymptotics in the far-field in terms of the WKB solution in the vertical
coordinate, but with the asymptotics from another paper [14]. Although this result is academic, it can be useful
in other areas of theoretical physics where such reference solutions are used.

It is shown that the question of the duality of the Fourier integrals cannot be a justification for the unique char-
acter of the strict absorption of the wave at the critical point. Another solution is not mathematically forbidden —
the lower part of the integral. Consequently, the search for a solution in the form (3), as half of the Fourier integral,
rather refers to a particular formulation of the problem. You can construct the solution as the lower half of the
integral, or you can add both sides, which is also mathematically correct. In our opinion, this duality is reduced only
to the question: what part of the Fourier integral should be taken. Everything is determined only by the specific for-
mulation of the problem, namely by the boundary conditions, without which a specific solution cannot be obtained.
Therefore, it is formulated as follows: can a wave fall on a critical point for an infinitely long time without reflection?
The answer is “Yes”. It is precisely such a solution that was constructed in [16], which we obtained in this work in
an alternative way. But it would be more customary to write the sign Re in front of the integral (3), that is, to single
out the real part of the solution. That is, it all comes down to the addition of the solution found in [16] in a complex
variable with a solution with a complex conjugate argument. However, such an action will lead to a solution in the
form of a sum of two solutions, which will no longer be an infinitely long incident on the focus wave. Consequently,
other formulations of the problem are possible, which will lead to a different answer, since there is no mathematical
prohibition on other formulations of the problem. That is, it all comes down to the addition of the solution found in
[16] in a complex variable with a solution with a complex conjugate argument. However, such an action will lead to
a solution in the form of a sum of two solutions, which will no longer be an infinitely long incident on the focus wave.
Consequently, other formulations of the problem are possible, which will lead to a different answer, since there is
no mathematical prohibition on other formulations of the problem. That is, it all comes down to the addition of the
solution found in [16] in a complex variable with a solution with a complex conjugate argument. However, such an
action will lead to a solution in the form of a sum of two solutions, which will no longer be an infinitely long incident
on the focus wave. Consequently, other formulations of the problem are possible, which will lead to a different an-
swer, since there is no mathematical prohibition on other formulations of the problem.

We have shown that the primary quantization of the reference function is the classical quantization of the
vertical Sturm-Liouville problem. Secondary quantization is the classical point of the stationary phase. Note
that the course of solutions shows how the 5/4 degree is added. Secondary quantization gives a degree of 1, this
is the degree of a barotropic problem. Taking into account the baroclinicity leads to a new parameter deter-
mined by the formula (19), from which it can be seen that the baroclinicity gives an additional contribution of
1/4. This is the contribution to the amplification of the amplitude factor due to the vertical compression of the
wave. Thus, the overall total amplification of amplitude fluctuations is made up of two factors: the horizontal
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splitting of the wave, which gives a degree of 1, and additional vertical compression of the wave, which gives a
degree of 1/4, and the total is 5/4.

Note that in this work, with the second quantization, one can restrict oneself only to the stationary phase
method, and this is due to the fact that the wave is quasi-monochromatic. However, for a more complete anal-
ysis, the obtained solution still needs to be convoluted in two components — the frequency and the longitudinal
component of the wavenumber, and in this case, the saddle-point method is already needed. This analysis will
be presented in a separate work.

Another result is the question of transmission coefficient. For a one-dimensional function, the reference solu-
tion has a classical logarithmic branch point, which gives an exponential transmission coefficient, and here we can
agree with [16]. However, in reality, for a full-fledged two-dimensional function, the question of passing the pole
is much more complicated. If you look at Figure 2, it becomes clear that in the two-dimensional case, in contrast
to the one-dimensional case, there is a mirror symmetry of the transparency and shadow regions before and behind
the focus. Therefore, a qualitatively new analysis is required to study the problem of transmission, which is fun-
damentally different from the one-dimensional approach. If in this work we were able to stitch two-dimensional
functions in the far zone from the side of the wave incidence on the focus, then stitching two-dimensional func-
tions behind the shadow region is a question, which, as far as we know, has not yet been considered by anyone in
a two-dimensional setting, and it requires the development of completely new approaches. Figure 2 demonstrates
that if the solution is stitched together as a one-dimensional function, then there will be an exponentially decaying
tail behind the focus, and the transmission coefficient will be exponentially small. However, it can be noted that
for a two-dimensional solution, the mode can go not only to the shadow region but also to the transparency regions
behind the focus. Therefore, on a qualitative level, it is clear that the one-dimensional result of an exponentially
small transmission is greatly exaggerated. The wave can overcome the focus by rearranging its mode along the
vertical, and thus the question of the transmission coefficient is rather open.

Due to the large horizontal scales, the analysis of Rossby waves in the vicinity of the focal point requires
consideration of the question: how stable is the result of infinite incidence on the focus when additional parame-
ters such as topography and stratification are taken into account. Analysis of the problem in a linear formulation
about the possible joint influence of topography and barotropic variable shear flow suggests that, rather, these
factors are widely separated in scale, and their combined effect is negligible [17—19]. However, in our opinion,
taking into account stratification in works such as [7, 8] is greatly underestimated.

The main result of this work is that, in the linear setting, the paraboloid mirror should change rather
smoothly so that the wave does not leave the process of infinitely long incidence onto the focus. However, in the
regions of strong jet flows, the WKB approximation and the linear formulation certainly do not work, and then
the consideration of the nonlinear formulation is required. The nonlinear critical layer of Rossby waves is more
a reflector than an absorber, and the nonlinearity can lead to the effect of a waveguide [19, 20] All these facts
indicate the need for an extremely careful approach in the analysis of Rossby waves.

4. Appendix. Reduction of the Fourier Integral to a Hypergeometric Function of a Complex Variable

For comparison with the solution [16], we rewrite the eigenfunctions (20) in the following form:

v (k g [ Al 5_ Ay 2 | 26
m ,y,z,w)—g w| S exp| 27— 8 | -exp| i| y+oo— | dl. (26)
y y Y
1/2
Let’s make the change of variables (/ — x) Argument e §'/2 | the Hermite polynomial is taken as a new
y
variable
211725172 on
- 22
y
Hence,
) 2u+1
X
¥, ~ [exp| -2ax? |2 —H,, (x) dx. (28)
0 <
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Note: in formula (28) a complex variable (2a) appeared, depending on two spatial physical variables (z, ).

11
2a=-- 2&2(1 +8yLy). (29)

In fact, the two-dimensional problem was solved through a one-dimensional integral, but only from a com-
plex argument. It is not hard to see that

1 25
2a 5z2—i(z,2+8yLy)

=%, (30)

where T — complex variable [16], * — complex conjugation. The integral representation of the hypergeometric
function in terms of the Hermite polynomials has the form (see [21], sections 7.37—7.38),
which is the formula 7.376.2, p. 852:

v+l 1 1 T v
F(—n;T;E;%j~£exp[—2ax2]x H,, (x)dx, (31)
where Rea > 0, Rev > —1;

which is the formula 7.376.3, p. 852:

v 3 1 7 2
F(—n;5+1;5;2—aj~£exp[—2ax }vaan(x)dx, (32)
where Rea > 0, Rey > 2.

Taking into account (15), we find:

3 1
=2u+l==+id| m+—|. 33
v=2u i (m 2) (33)

Consequently, the constructed solutions are regular, the integrals converge. The similarity with the solution
[16] was achieved in three out of four parameters. Determine the last parameter of the hypergeometric function:

v 7 .0 1
—+l=—+i=| m+—=|=7*, 34
27 T8 (m 2] 4 (34)
where v Is the quantum parameter from [16] (formula (2.7)). Find the second parameter in a similar way:
vl 5,8 il (35)
2 4 2 2

Thus, we got full compliance with the work [16]. If we take into account the second part of the Fourier
integral for negative wavenumbers, then by changing the variable it can be reduced to an integral over positive
wavenumbers, while in the integral under study, the imaginary unit will be replaced (i — —i1), and this will lead
to the fact that the second part of the solution appears in which instead of T and y will t* and y*. Thus, the gener-
al solution to the problem is the sum of solutions from t and t*, which is physically equivalent to the sum of the
incident and reflected waves. Therefore, mathematically, there is no prohibition on reflection, and the version
of infinite focusing is greatly exaggerated. When the wave slows down more and more as it moves towards the
focus, it is physically difficult to understand whether it is an incident wave or a standing mode, therefore, in the
applied sense, there is not a big difference between half of the Fourier integral solution (3) or the whole Fourier
integral, when the integration limits are from —oo to +oo, which is equivalent to writing the sign Re in front of
the integral (3).

5. Funding

The study was carried out with the financial support of the Russian Foundation for Basic Research within
the framework of scientific project No. 20—05—0006. The work of V.G. Gnevyshev was also carried out with-
in the framework of the state assignment of the Institute of Oceanology of the Russian Academy of Sciences
No. 0128—2021-0003.

22



ITapaGonnyeckue JoByHiKd BoaH Poccou B okeane

Parabolic traps of Rossby waves waves in the ocean

References

Bulatov V.V., Viadimirov Yu.V. Far fields of internal gravitational waves in inhomogeneous and nonstationary stratified
media. Fundam. Prikl. Gidrofiz. 2013, 6(2), 55—70 (in Russian).

2. Lighthill J. Waves in liquids / James Lighthill; Translated from English, edited by P.P. Koryavov, P.I. Chushkin. Moscow,
Mir, 1981. 598 p. (in Russian).

3. Gnevyshev V.G., Shrira V.I. Dynamics of Rossby wave packets in the vicinity of the zonal critical layer taking into account
viscosity. Izvestiya Akademii Nauk SSSR, Fizika Atmosfery i Okeana. 1989a, 25(10), 1064—1074.

4. Gnevyshev V.G., Shrira V.1. Kinematics of Rossby waves on non-uniform meridional current. Oceanology. 1989, 29(4),
543—548.

5. Gnevyshev V.G., Badulin S.1., Belonenko T.V. Rossby waves on non-zonal currents: structural stability of critical layer
effects. Pure Appl. Geophys. 2020, 177, 5585—5598. doi: 10.1007/s00024—020—02567—0

6. Badulin S.1., Shrira V.I. On the irreversibility of internal wave dynamics owing to trapping by large-scale flow
nonuniformity. J. Fluid Mech. 1993, 251, 21—53. doi: 10.1017/50022112093003325

7. Killworth P.D., Blundell J.R. Long extratropical planetary wave propagation in the presence of slowly varying mean flow
and bottom topography. Part I: The local problem. J. Phys. Oceanogr. 2003, 33(4), 784—801.
doi: 10.1175/1520—0485(2003)33<784: LEPWPI>2.0.CO;2

8. Killworth P.D., Blundell J.R. The dispersion relation for planetary waves in the presence of mean flow and topography.
Part II: Two-dimensional examples and global results. J. Phys. Oceanogr. 2005, 35, 2110—2133. doi: 10.1175/jp02817.1

9. LaCasce J.H., Pedlosky J. The Instability of Rossby Basin Modes and the Oceanic Eddy Field*. J. Phys. Oceanogr. 2004,
34(9), 2027—-2041. doi: 10.1175/1520—0485(2004)034<2027: TIORBM>2.0.CO;2

10. Zonal Jets — Phenomenology, Genesis, and Physics / Edited by Galperin B., Read P.L. University Printing House,
Cambridge, 2019. 524 p.

11. Gnevyshev V.G., Shrira V.1. On the evaluation of barotropic-baroclinic instability parameters of the zonal flows in beta-
plane. Doklady Akademii Nauk SSSR. 1989c, 306(2), 305—309.

12. Gnevyshev V.G., Shrira V.I. On the evaluation of barotropic-baroclinic instability parameters of zonal flows on a beta-
plane. J. Fluid Mech. 1990, 221, 161—181. doi: 10.1017/S0022112090003524

13. Kobayashi S., Sakai S. Barotropic unstable modes in zonal and meridional channel on the beta-plane. Geophysical &
Astrophysical Fluid Dynamics. 1993, 71(1—4), 73—103. doi: 10.1080/03091929308203598

14. Badulin S.1., Shrira V.1., Tsimring L.S. The trapping and vertical focusing of internal waves in a pycnocline due to the
horizontal inhomogeneities of density and currents. J. Fluid Mech. 1985, 158, 199—218. doi: 10.1017/s0022112085002610

15. Gnevyshev V.G., Shrira V.I. Transformation of monochromatic Rossby waves in the critical layer of the zonal current.
Izvestiya Akademii Nauk SSSR, Fizika Atmosfery i Okeana. 1989d, 25(8), 852—862.

16. Erokhin N.S., Sagdeev R.Z. On the theory of anomalous focusing of internal waves in a two-dimensional inhomogeneous
fluid. Part 1. Stationary problem. Mor. Gidrofiz. Journal. 1985, 2, 15—27 (in Russian).

17. Gnevyshev V.G., Belonenko T.V. The Rossby paradox and its solution. Gidrometeorologiya i Ekologiya. Hydrometeorology
and Ecology (Proceedings of the Russian State Hydrometeorological University). 2020, 61, 480—493 (in Russian).
doi: 10.33933/2074—2762—2020—61—480—493

18. Gnevyshev V.G., Badulin S.1., Koldunov A.V., Belonenko T.V. Rossby Waves on Non-zonal Flows: Vertical Focusing and
Effect of the Current Stratification. Pure Appl. Geophys. 2021. doi: 10.1007/s00024—021—-02799—8

19. Gnevyshev V.G., Frolova A.V., Koldunov A.V., Belonenko T.V. Topographic effect for Rossby waves on a zonal shear flow.
Fundam. Prikl. Gidrofiz. 2021, 14, 1, 4—14. doi: 10.7868/S2073667321010019

20. Gnevyshev V.G., Frolova A.V., Kubryakov A.A., Sobko Y.V., Belonenko T.V. Interaction of Rossby waves with a jet stream:
basic equations and their verification for the antarctic circumpolar current. Izv. Atmos. Ocean Phys. 2019, 55(5), 412—
422. doi: 10.1134/S0001433819050074

21. Gradshtein 1.S., Ryzhik 1. M. Tables of integrals, sums, series and products. 1963, 1100 p. (in Russian).

JlurepaTtypa

1. Byaamoe B.B., Baradumupos IO.B. JlanbHue 1OJs1 BHYTPEHHUX I'PABUTAIIMOHHBIX BOJH B HEOTHOPOIHBIX U HECTAIIO-
HapHBIX CTPaTU(UILIMPOBAHHBIX cpenax // OyHnaMeHTaabHast U MpuKiIagHas ruapodusuka. 2013. T. 6, Ne 2. C. 55—70.

2. Jlatimxuan Jxc. Bonnbl B xunkoctsix / Jxxeiimc Jlaiitxumn; [ep. ¢ anra. mon pen. I1.11. KopsioBa, I1.U. Yymikuna. M.:
Mup, 1981. 598 c.

3. Tneswiues B.I., lllpupa B.H. lnHaMuKa 1makeToB BoJH PoccOM B OKpEeCTHOCTH 30HAJTLHOTO KPUTHUECKOTO CJIOST C yue-

oM Bsizkoctu // I3B. AH CCCP. Cep. dusnka armocheps! 1 okeana. 1989a. T. 25, Ne 10.

23



Tnesviues B.I., beaonenko T.B.
Gnevyshev V.G., Belonenko T.V.

24

14.

15.

16.

17.

18.

19.

20.

21.

I'uesbiies B.T., [lpupa B.1. Kunemaruka BoaH PoccOu Ha HEOTHOPOTHOM MEPUAMOHATBLHOM TeueHnu // OKeaHo-
norust. 1989. T. 29, Ne 4. C. 543—548.

Gnevyshev V.G., Badulin S.1., Belonenko T.V. Rossby waves on non-zonal currents: structural stability of critical layer
effects // Pure Appl. Geophys. 2020. V. 177, N 11. P. 5585—5598. doi: 10.1007/s00024—020—02567—0

Badulin S.1., Shrira V.1. On the irreversibility of internal wave dynamics owing to trapping by large-scale flow nonunifor-
mity // J. Fluid Mech. 1993. V. 251. P. 21—-53. doi: 10.1017/S0022112093003325

Killworth P.D., Blundell J.R. Long extratropical planetary wave propagation in the presence of slowly varying mean flow
and bottom topography. Part I: The local problem // J. Phys. Oceanogr. 2003. V. 33, N 4. P. 784—801.
doi: 10.1175/1520—0485(2003)33<784: LEPWPI>2.0.CO;2

Killworth P.D., Blundell J.R. The dispersion relation for planetary waves in the presence of mean flow and topography.
Part II: Two-dimensional examples and global results // J. Phys. Oceanogr. 2005. V. 35. P. 2110—2133.
doi: 10.1175/jp02817.1

LaCasce J.H., Pedlosky J. The instability of Rossby Basin modes and the oceanic eddy field // J. Phys. Oceanogr. 2004.
V. 34, N9. P. 2027—2041. doi: 10.1175/1520—0485(2004)034<2027: TIORBM>2.0.CO;2

. Zonal Jets — Phenomenology, Genesis, and Physics / Edited by Galperin B., Read P.L. University Printing House,

Cambridge. 2019. 524 p.

. Tnesvimes B.I., lllpupa B.H. O6 ougHKe nmapamMeTpoB 0apOTPOITHO-0apOKJIMHHON HEYCTONYMBOCTU 30HAJIBHBIX TeUe-

HMit Ha 6eTta-1iockoct // Joknansl Akagemun Hayk CCCP. 1989c. 306(2). C. 305—309.

. Gnevyshev V.G., Shrira V.I. On the evaluation of barotropic-baroclinic instability parameters of zonal flows on a be-

ta-plane // J. Fluid Mech. 1990. V. 221. P. 161—181. doi: 10.1017/S0022112090003524

. Kobayashi S., Sakai S. Barotropic unstable modes in zonal and meridional channel on the beta-plane // Geophysical &

Astrophysical Fluid Dynamics. 1993. V. 71. P. 73—103. doi: 10.1080/03091929308203598

Badulin S.1., Shrira V.1., Tsimring L.S. The trapping and vertical focusing of internal waves in a pycnocline due to the
horizontal inhomogeneities of density and currents // J. Fluid Mech. 1985. V. 158. P. 199-218.
doi: 10.1017/50022112085002610

Tnesviwes B.I., lllpupa B.H. TpaHnchopMmalivsi MOHOXpOMaTHYECKUX BOJH PoccOU B KpUTUUECKOM CJI0€ Ha 30HAJIbBHOM
teuenuu // U3B. AH CCCP. Cep. dusuka atmochepst 1 okeana. 1989d. T. 25, Ne §.

Epoxun H.C., Cazdees P.3. K Teopuu aHOMaIbHOI (DOKYCUPOBKM BHYTPEHHMUX BOJIH B IByMEPHO-HEOIHOPOXHOM XU~
koctu. Yactp 1. CrarmoHapHas 3agaya // Mopckoii runpodusmdeckuii xxypHair. 1985. Ne 2. C. 15-27.

Tnesviues B.I., beaonenxo T.B. I1apanokc Poccou u ero peiienue // I'mapomereoposiorust u akosnorus (YuyeHble 3amnu-
cku PITMY). 2020. Ne 61. C. 480—493. doi: 10.33933/2074—2762—2020—61—480—493.

Gnevyshev V.G., Badulin S.1., Koldunov A.V., Belonenko T.V. Rossby Waves on Non-zonal Flows: Vertical Focusing and
Effect of the Current Stratification // Pure Appl. Geophys. 2021. doi: 10.1007/s00024—021—02799—8

Tneevies B.I., ®Pponrosa A.B., Koadynos A.B., beaonenro T.B. Tonorpaduueckuit 3ddekr mis BoimH PoccOu Ha
30HAJILHOM CIBUTOBOM MOTOKe // DyHmameHTaldbHas W TpukiamHas ruapodusuka. 2021. T. 14, Ne 1. C. 4—14.
doi: 10.7868/S2073667321010019

Tnesviwes B.T., @Ppososa A.B., Kybpsakos A.A., Cobko IO.B., beaonenxo T.B. B3aumonectsue BosiH Poccou co cTpyii-
HBIM ITOTOKOM: OCHOBHbIE YPaBHEHUS U UX BepU(UKaIUs 111 AHTAPKTUIECKOTO LIMPKYMIIOJISIpPHOTO TeueHus // W3-
Bectust Poccuiickoit akagemuu Hayk. @usnka atMocdepsl 1 okeaHa. 2019. T. 55, Ne 5. C. 39-50.

Ipadwmeiin U.C., Porwcux M. M. TaGauiibl MHTEIPaIoB, CYMM, PSIIOB U Mipou3sBeaeHnii. 1963. 1100 c.



