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CUMMETPUYHASA HEYCTOMYMUBOCTbH TEOCTPO®UYECKUX TEUEHU
C KOHEYHbIM ITOIIEPEYHBIM MACIHITABOM

Cratbs noctynuia B penakuuto 30.04.2021, nocne nopadotku 23.09.2021

ITpoBeneH cpaBHUTENbHBIN aHAIU3 CUMMETPUUHBIX HEYCTOMYMBBIX BO3MYLIEHUI TeOCTpOGUUECKOro TeUeHHUsI ¢ MOCTO-
STHHBIM BEPTUKAJIBHBIM U TOPU30HTAIBHBIM CIBUTOM CKOPOCTU B O€3rpaHUIHOI 00J1aCTH 1 00J1aCTU C OOKOBBIMM TPaHULIAMU.
IIpencraBiaeHbl pacyeTbl CKOPOCTU POCTAa HEYCTOMYMBBIX BO3MYILEHUIT B 3aBUCHUMOCTH OT BEPTUKAIbHOIO BOJHOBOTO YMCia
IUIST pa3IMIHBIX Oe3pa3MepHBIX MapaMeTpoB 3agaun. OTMedaeTcs, 9TO B CiIydae CUMMETPUYHON HEYCTOMYMBOCTU TEUCHMSI
C KOHEYHBIM TMOMNepeYHbIM MacITaboM ¢ yyeToMm audy3un Macchl U UMITyJibca, KOTOpasi BO3HMKaeT npu ycioBuu Ri - (1 +
+ Ro) <1 (Ri — reoctpoduueckoe uncio Puyapacona, Ro — uucio Poccou), cyliecTByeT KOHEUHbI BEPTUKAJIBbHbBIN MaclITad
MaKCHMaJIbHO pacTyILIero BO3MYILEHUS B OTJMYME OT Cydyasi CUMMETPUYHOM HEYCTOMUYMBOCTH B O€3rpaHUYHOM 001aCTH, KOTaa
MaKCHMaJIbHO pacTyllee BO3MYIICHHE ¢ yI4eTOM UM Y3Ur Macchl M UMITyJIbca peann3ytores npu m — O (m — BepTUKaIbHOE
BOJIHOBOE yHncyio). [TokazaHo, YTO COBMeCTHbIM 3(peKT OOKOBBIX rpaHuUll U AMDDY3UU UMITYIbca U Macchl ipu Pr > 1 (Pr —
yucio [MpaHamis) B 3aBUCMMOCTH OT 3HAYCHUI Ge3pa3MepHBIX MapaMeTPOB 3214l MOXKET CYIIIECTBEHHO BJIMSITh HAa TUHAMUKY
CUMMETPUYHBIX BO3MYILIEHUI, & UMEHHO: TTPUBOIUTD K CY>KEHMIO CIIEKTpa HEyCTOMYMBBIX BO3MYIICHUIM M YMEHBIIEHUIO UX
CKOPOCTH POCTa, U IaxKe MPeTsITCTBOBATh Pa3BUTHIO HEYCTOMINBOCTH.

KiroueBbie ciioBa: CMMMETpUYHASI HEYCTOMYMBOCTD, METOI MaJIbIX BO3MYILIEHUI, 3a[1aua Ha COOCTBEHHBIC 3HAUCHUST, TN hYy3Us
Macchl M UMITYJIbCa, YCIOBUSI HEYCTOMUMBOCTU TeOCTPO(UUECKOTO TEUEHMSI.
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A comparative analysis of unstable symmetric perturbations of the geostrophic current with a constant vertical and horizon-
tal velocity shear in an unbounded region and a region with lateral boundaries is performed accounting for vertical diffusion of
buoyancy and momentum. Calculations of the growth rate of unstable perturbations are presented as a function of the vertical
wavenumber for various dimensionless parameters of the problem. It is found that in the case of the geostrophic current with lateral
boundaries, the maximum-growing mode of symmetric instability arising when condition Ri - (1 + Ro) < 1 (Ri is the geostrophic
Richardson number, Ro is the Rossby number) is satisfied has a finite vertical length scale, while in the case of the unbounded
region, the vertical wavenumber of the maximum-growing mode is asymptotically vanishing. A combined effect of lateral bound-
aries and diffusion of buoyancy and momentum at Pr> 1 (Pr is the Prandtl number), depending on the values of the dimensionless
parameters of the problem, can significantly affect the dynamics of symmetric perturbations, namely, lead to a narrowing of the
spectrum of unstable perturbations and a decrease in their growth rates, and even prevent the development of instability.

Key words: symmetric instability, small perturbation method, eigenvalue problem, diffusion of mass and momentum, conditions
for instability of geostrophic current.

1. Introduction

The study of the instability of geostrophic currents is important for describing the formation of intrusive layer-
ing [1-7], generation of eddies [8, 9], exchange, mixing, and transformation of waters in the ocean [10—14]. The
study of symmetric instability of baroclinic currents in the upper layer of the ocean [15—18], which can significantly
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contribute to re-stratification and mixing, has been of particular interest recently. The description of such instability
is carried out, as a rule, in the approximation of an ideal fluid. However, in the general case, the term “symmetric
instability” is understood as two-dimensional instability (2D instability) of a geostrophic current or front, that is,
perturbations are considered that do not depend on the coordinate directed along the flow. Therefore, the MclIntyre
instability arising due to the difference between buoyancy and momentum diffusivities [19], as well as the instability
of baroclinic fronts caused by double diffusion [1—3], should also be attributed to symmetric instability. For conve-
nience, we will refer the 2D instability of the geostrophic flow of an ideal fluid as “classical symmetric instability”.
For the first time, probably, the description of the classical symmetric instability for a geostrophic current with a
linear vertical profile was performed by Stone [20]. In this work, a criterion for the instability is given
2 2
Lj\; 5 :( j;v )2 =Ri<1, where N is the buoyancy frequency, f'is the Coriolis parameter, U(z) is the geostrophic
)

dz

. dU . . . . . . ..
current velocity, T is the constant vertical shear of geostrophic velocity, a is the slope of isopycnal surfaces, Ri is
4

L . . . . dU . .
the geostrophic Richardson number. If the constant horizontal gradient of geostrophic velocity o is taken into
y

account (where y is the transverse coordinate relative to the current), the classical symmetric instability criterion
. . . du . .
Ri <1 can be re-written as Ri - (1 + Ro) < 1, where Ro= [—d—] / f isthe gradient Rossby number [21].
y

The analytical description of the classical symmetric instability is limited to considering either an infinite region
vertically and horizontally, or a vertically finite and horizontally infinite region (see, for example, [15, 22]). Howev-
er, ocean fronts or currents have a finite transverse scale. In this regard, it is important to evaluate the possibility of
the appearance of symmetric instabilities of various types in the region with lateral boundaries, taking into account
vertical diffusion of buoyancy and momentum which is the objective of this study.

2. Description of the problem

The analysis of symmetric instability is carried out for a zonal geostrophic current with a linear vertical velocity
profile based on the method of small perturbations. The equations for the mean state are:

fU——Q V=0, W=0, Q=—g5,
oy (74

where U, V, W are the zonal, meridional and vertical velocities of the mean state current; P, p are the mean state pres-
sure and density, normalized to the reference density, the x, y and z axes are directed along the current, across the cur-
rent and upward, respectively. The barotropic shear of the basic flow is taken into account: U= U(y, z), 6U/0y = const.

The equations for small perturbations independent of the x — coordinate (symmetric perturbations), taking into
account the vertical diffusion of mass and momentum, will have the following form:

2
——fv M Y (1)
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where u, v, w are the zonal, meridional and vertical components of velocity perturbations, p, p are the pressure and
density perturbations normalized by the reference density, g is the acceleration of gravity, K = const is the vertical
diffusivity of buoyancy, Pr is the Prandtl number. Here we use the simplest parametrization of the mixing coefficients
typical for the analytical analysis of instability (see, for example, [19]).
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In the case of a geostrophic current with a finite transverse length scale, the solution for any variables of the sys-
tem (1)—(5) is sought in the form (see, for example, [23]).

v :‘Il(y)emtﬂ‘mz, (6)

where  is either the decrement coefficient (if ® < 0) or the growth rate (if ® > 0) of the unstable perturbations, and
m is the vertical wavenumber; o = 0 corresponds to the neutral perturbations.
Substituting (6) into the system (1)—(5), we obtain the equation for the meridional velocity component 17( y) :

2= ~ ~ ~ .
ﬂ+l’ﬂ.(am+ﬂj_g,(wl’r2mm2+ﬁﬂ2 @ sz:O’ %)
N N Opy

where o =~ fgo = gpy /N 2 is the isopycnal slope (o< 1), op, = © + Prkm?, ®=wm+ sz, Py is the mean state hor-

izontal density gradient, normalized by the reference density, f = f —Z—U.
For a flow with a finite transverse lengthscale L, equation (7) is solved under the following boundary conditions:
¥(y)=0 aty=0, L. (8)

The eigenvalue problem (7), (8) is reduced to finding the roots (that is, the values of w depending on the wavenumber
m) of the following equation:

~\2 ) LP) 2.2
1 am+o 2 =mpro)2m I (omz + X ’21 , (n=1,2,3..). 9)
4 op N op N2 L

T
A detailed description of the solution to the eigenvalue problem for a second-order equation (7) with constant coef-

ficients can be found, for example, in [23]. The maximum-growing mode is realized at n = 1.
In the case of an ideal fluid, equation (9) is reduced to a quadratic equation

2772
* N
o+ —a’N?+ o =0. (10)
The instability condition according to equation (10) is determined by the inequality
az—%>0 orRi-(1+Ro)<1, (11)

which is the same as in the case of laterally unbounded current (see, e.g. [21] and the Appendix, Section “Ideal flu-
id”’). However, it follows from Eq. (10) that when the condition (11) is satisfied, the perturbations at small wavenum-
bers can be stable, in contrast to the case of unbounded flow. Thus, the lateral boundaries make the range of unstable
wavenumbers narrower, preventing the instability of perturbations with a large vertical scale (or small wavenumber
m). It also follows from (10) that the growth rate increases with increasing wavenumber and tends to a maximum
value when m — . Here one can see an analogy with the classical symmetric instability for the current without
lateral boundaries, but in a layer of finite depth (see e.g. [20]), when the growth rate increases with the growth of the
horizontal transverse wavenumber.

For a dissipative fluid at Pr = 1, Eq. (9) has the form

2272
(m+Km2)2+ﬁ*—a2N2+’22—N2=0. (12)
m

In this case, the instability condition is also reduced to (11). However, according to (12), perturbations with small and
large wave numbers m can be stable. Therefore, due to the presence of lateral boundaries of the flow, as well as due to
diffusion of buoyancy and momentum, in this case there is a finite vertical scale of the maximum-growing perturba-
tion (cf. Section “Dissipative fluid” of the Appendix).

For the convenience of calculating Eq. (9) for various values of Pr, we introduce dimensionless variables as fol-
lows

Let us rewrite (9) in the dimensionless variables, omitting the “asterisks™:
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2
% 1+Ro)d x2 _ .
ﬁ[n%} :mpra)+(®—)+%3u : (13)
Pr Pr
2 2 A2 272
where wp, = + Prm?, ®=w+m’ ,and Bu" = 1; f];/y - ;2 AL/z is an analogue of the Burger number, Bu = lj’ZJLVZ )

which is an important parameter in problems of 3D instability of geostrophic currents with vertical scale, H, and

1/2
horizontal scale, L (see e.g. [9]); h= (?j is the characteristic vertical scale of the perturbation.

Let us compare the maximum growth rates of unstable perturbations obtained from (13) with those for an un-
bounded frontal zone (Appendix, Section “Dissipative fluid”, Eq. A9).

3. Results of calculations
Unbounded region

In the case of an ideal fluid, the maximum-growing perturbations are parallel to the isopycnic surfaces (see, for
example, [15] and Section “Ideal fluid” of the Appendix), and the growth rate does not depend on the wavenumber
m (Appendix, formula (A4)). The instability pattern changes if we take into account dissipation (Fig. 1).

In this case, the maximum-growing modes are also parallel to the isopycnals, but, according to calculations
for the selected values of the problem parameters, perturbations are stable at m > 1.2. The maximum growth rate at
these values of the parameters is close to unity, that is, the characteristic time of the formation of perturbations (the
increase in the amplitude by a factor of e) at f= 10~*s~! is approximately 3 hours. The instability at Pr = 1 should be
distinguished from the classical symmetric instability, despite a similar instability criterion (see Appendix, Section
“Dissipative fluid”).

Figure 2, a shows the o as a function of vertical wavenumber m at Pr = 10 and different values of Ri and Ro. With
the increase of Pr, the region of unstable perturbations becomes much narrower. The growth rate of the maximum-
growing perturbations due to the McIntyre instability (Section “Dissipative fluid” of the Appendix) is significantly
lower than that for the symmetric instability (curve 3 in Fig. 2, a).

An important feature of the MclIntyre instability, as well as the instability of the baroclinic front due to double
diffusion (see, for example, [3]), is that there is a finite vertical scale (or finite wavenumber) of the maximum-grow-
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Fig. 1. The ® vs m calculated on the basis of equation (A9) for Pr = 1, and for various values of the problem parameters:
a — curve 1: Ri =0.5, Ro=0.5; curve 2: Ri = 0.5, Ro = 0; curve 3: Ri=0.5, Ro=—0.5; b — curve 1: Ri=1, Ro=—0.5;
curve 2: Ri=1, Ro=—1.
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Fig. 2. The ® vs m calculated on the basis of equation (A9) for various values of the problem parameters: a — Pr =10,
curve 1: Ri=0.5, Ro=0; curve 2: Ri=1, Ro=—0.5; curve 3: Ri=1, Ro=0.5; » — Ri =1, Ro = 0 (MclIntyre instability),
curve 1: Pr=4; curve 2: Pr=10; curve 3: Pr= 30; curve 4: Pr = 100.

ing perturbation in the infinite region. Figure 2, b shows the growth rates for the MclIntyre instability at Ri = 1,
Ro = 0 and different values of the Pr. With the increase of Pr, the wavenumber of the maximum-growing perturbation
decreases, and the growth rate o weakly increases, but even at high Pr it remains limited as w < 0.2.

Region with lateral boundaries

The lateral boundaries of the flow contribute to the stability of perturbations at low vertical wavenumbers
(Fig. 3, a). Due to the combined effect of lateral boundaries and dissipation, there is a maximum-growing perturbation
at a finite wavenumber m for the symmetric instability arising under the condition (11) (compare Figs 1, a and 3, a).
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Fig. 3. The o vs m calculated on the basis of equation (13) for various values of the problem parameters at Bu* = 0.001:
a— Pr=1; curve 1: Ri = 0.5, Ro = 0.5; curve 2: Ri = 0.5, Ro =0; curve 3: Ri = 0.5, Ro=— 0.5; b — Pr = 10; curve 1:
Ri=0.5, Ro=10.5; curve 2: Ri = 0.5, Ro = 0; curve 3: Ri = 0.5, Ro=-0.5.
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Fig. 4. The same as in Fig. 3, but at Bu* = (0.01.

With the increase of Pr, the growth rate of the symmetric instability arising when condition (11) is satisfied decreases
(Fig. 3). Moreover, for certain values of Bu™ and Pr, the symmetric instability does not appear even if condition (11)
is satisfied (see Fig. 4, b, curves / and 2).

The presence of lateral boundaries of the flow especially sharply affects the MclIntyre instability (cf. Figs 2, b and
5). With the increase of Pr, the growth rate of the maximum-growing perturbation first increases and then tends to
zero (Fig. 5, a). For Bu" ~ 0.01, the Mclntyre instability does not arise even when Pr = 4 (Fig. 5, b). Therefore, the
fulfillment of the condition 1 < Ri < (Pr + 1)2/4Pr does not guarantee the development of Mclntyre instability ([19],
see also Appendix, Section “Dissipative fluid”) in the region with lateral boundaries at some values of Bu™.

4. Discussion of results and conclusions

First of all, let us briefly discuss the influence of the Prandtl number on the dynamics of perturbations. The geo-
strophic current or front is stable due to the balance between the velocity field and the density field. This balance can
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Fig. 5. The ® vs m calculated on the basis of equation (13) at Ri = I, Ro = 0 (Mclntyre instability): « — Bu* = 0.001;
curve 1: Pr=4; curve 2: Pr=10; curve 3: Pr=30; b — Bu” = 0.01; curve 1: Pr = 4; curve 2: Pr = 30.
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be violated if the momentum diffusion exceeds the mass diffusion (Pr > 1). For this reason, the current or front can
come to an unstable state. Obviously, at Pr < 1, an imbalance can also occur between the density field and the velocity
field. Therefore, the Mclntyre instability is often called viscous-diffusion instability. A detailed explanation of this
instability for a geostrophic current without lateral boundaries is given in [24].

Our calculations show that with an increase in the Prandtl number (with increasing friction), the spectrum of
short-wave (large m) unstable disturbances narrows. In turn, the lateral boundaries of the front narrow the spectrum
of unstable long (small m) perturbations. Thus, the combined effect of friction and lateral boundaries prevents the
generation of unstable perturbations on both sides of the spectrum. Therefore, it is physically justified to expect that
for some values of the parameters characterizing the mean field, the instability of the geostrophic current with lateral
boundaries may not appear taking into account dissipation. An analysis of cases of instability of a front with lateral
boundaries at Pr < 1 is beyond the scope of this work. This is primarily due to the fact that the inequality Pr > 1 is
typical for the ocean.

According to calculations, the growth rate of unstable perturbations is sensitive to the value of the parameter

. K N? o . : . .
U =——— Therefore, it is important to evaluate the typical values of this parameter in the ocean. The vertical

s f
diffusivity K'in the ocean lies in a wide range: in the upper quasi-homogeneous layer, K can reach a value comparable
to 1 m2s~!, while in the pycnocline, where the turbulence has intermittent character, it can be as small as 107¢ m2s~!
(see, e.g., [4]).

However, we must take into account that the value of K is small at large N. In this regard, there are certain re-
strictions on the maximum value of the parameter Bu” even in the cases when currents have a small transverse scale L
(about several kilometers). Indeed, setting Bu*=0.01, N=3-10"3s~!, f/=10"*s~!, L = 3 - 10> m we get that the dif-
fusivity should be sufficiently large, K= 10~2 m2s~!. Thus, it is most likely to suggest that typical values of the Bu" can
rarely exceed 0.01. Nevertheless, even at smaller values of Bu”, the effect of lateral boundaries and diffusion can sig-
nificantly reduce the growth rates of symmetric perturbations (see Figs. 3—4) and even totally suppress the instability.

Taking into account that the vertical shear of geostrophic current with a linear vertical profile is expressed as

N? . S .
a;—U = Ta, large values of vertical shear are expected at fronts with high values of the isopycnal slope a and buoyan-
74

. . dUu . .

cy frequency M. It is reasonably to estimate o and 2 for the selected values of the Richardson number used in our
4

calculations and the following values of the buoyancy frequency and the Coriolis parameter: N =3 - 103 571, f=

2

=10"*s"!. Taking Ri= ( f )2 =0.5, we get oo = 4.7 - 10-2. Typical mean slopes of isopycnals in the ocean pycno-
Na

cline, as a rule, are more than an order of magnitude smaller (see, e.g., [11, 23]). However, in the upper quasi-uni-

form layer, the isopycnal slopes may even exceed the obtained value. Indeed, according to [16], the Ekman transport

caused by the wind stress on the ocean surface can significantly increase the isopycnal slopes. Substituting the above

. . . dU _ . .
values a, N, finto the formula for the vertical shear, we obtain 2 =4.2:-107 s If we apply our considerations to
74
a vertical layer of 100 m thick, the maximum current velocity will be equal to 0.42 m s~!, which satisfactorily corre-

sponds to the observed velocities at oceanic fronts.

In conclusion, let us briefly summarize the main results of the study.

A comparative analysis of unstable symmetric perturbation of the geostrophic current with a constant vertical and
horizontal velocity shear in an unbounded region and a region with lateral boundaries is performed accounting for
vertical diffusion of buoyancy and momentum.

It is found that in the case of the current with lateral boundaries, the maximum-growing mode of symmetric in-
stability arising when condition Ri - (1 + Ro) < 1 is satisfied has a finite vertical length scale, while in the unbounded
case, the vertical wavenumber of the maximum-growing mode is asymptotically vanishing.

The combined effect of lateral boundaries and diffusion of buoyancy and momentum at Pr> 1, depending on the
values of the dimensionless parameters of the problem, can significantly affect the dynamics of symmetric perturba-
tions, namely, lead to a narrowing of the spectrum of unstable perturbations and a decrease in their growth rates, and
even prevent the development of instability.
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Appendix

In the case of infinite area, the solution of system Eq. (1)—(5) is sought in the form

v =y exp(of +imz +ily), (A1)

where v is any disturbed variable from Eq. (1)—(5). Note that with this form of a solution, the tangent of the angle of
inclination of the perturbations relative to the horizontal (slope) is tan(y) = —é.

Let’s consider different cases of the Eq. (1)—(5) for solutions (Al).

Ideal fluid

After removing the last term in the right hand part of Eq. (1), (2), and (5) and substituting Eq. (A1) to Eq. (1)—(5)
the following equation for ® is obtained:

2
m2+ﬁ*+2-a.N2i+N2l—2:O. (A2)
m m
Let’s rewrite (A2) as:
o+ +N*(I/m+a)’-a’ N> =0. (A3)

£

It follows from Eq. (A3) that instability (i.e., ® > 0) is possible only when o? —% >0 orRi- (1 + Ro) < 1. Thus, we
obtain the Hoskins formula [21] (see also Eq. (11)).
According to Eq. (A3), the slope of the maximum growing perturbations, v;, is

)
y,=—|—| =a.
m);

Thus, perturbations with different wave numbers m and /, which are parallel to the isopycnic surfaces, have a maxi-
mum growth rate (see also [17, 19]).
The growth rate of the maximum growing perturbations, w;, is

I 1/2
= f(ﬁ—(HRo)j | (A%)

Note that Eq. (A4) coincides the well-known formula by Stone [20], provided that Ro = 0. Formula (A4) was also
obtained in [15].

Dissipative fluid
In this case the equation for m at o <1 is:
~ ~ . 2
ﬂ;’wia 142 +ﬁ2i+1—2=0, (AS)
N m Op; N Wp  m

where op, = @ + Prkm?, &= o+ Km".

For Pr=1, Eq. (AS) is reduced to a quadratic equation:
0N\ o w2 ! SR
(me ) + AN Sra| —a2N2=0. (A6)
m
As in the case of the ideal fluid, the instability is possible only if inequality (11) is satisfied. Equation (A6) also implies
that the slope of the maximum-growing perturbations is equal to the slope of isopycnic surfaces. However, the max-

imum-growing perturbation is realized at m — 0 (cf. Egs. (A3), A(6), and (12)).

10
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For Pr# 1, Eq. (AS) is reduced to a polynomial of the third degree
o>+ C,0? + Cio + Cy=0. (A7)

It is easy to show that when the inequality I <Ri- (1 + Ro) is satisfied, the coefficients C,, C, are nonnegative. Thus,
Eq. (A7) has one and only one positive real root and only if C, < 0 (see, e.g., [3]).
To analyze the dissipation-related instability, let us consider the free term of Eq. (A7)

gt Pr+l 2(Pr+1)’
C, = Km*N?Pr Prkm + A + o(Pr )+L 2T (Pr+1) . (A)
N?  PrN? 2Pt m 4pPr?
Coefficient C,, can be negative only if
« 2
Pr+1
I Ri(14Ro) <P
()LzN2 4Pr

2

Pr+1

Conditions 1< Rj(l + Ro) < (4T) and Pr # 1 are the Mclntyre instability conditions [19]. The slope of the max-
T

imum-growing perturbation according to (AS8) is

y :_(L) :a(Pr+1)'

m), 2Pr

It is easy to show that to calculate the maximum growth rate as a function of the vertical wavenumber m for dif-
ferent values of the parameter Ri, Pr, Ro in the approximation of an infinite frontal zone (unbounded region), one
should use equation (13) taking into account the condition L — oo

2 ~

& 1+R

L1, 0] _g, 5. (FRO® (A9)
4Ri ®p 0p

T T

Equation (A9) allows one to find the growth rates of perturbations that have a slope corresponding to the maxi-
mum-growing increments. Note that equation (A9) can also be obtained based on equation (AS).
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