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O ITPUPOJE DKCTPEMAJIBHbIX BOJIH B OKEAHE

Crarbst noctynuia B penakuuio 24.03.2020, mocne nopadotku 14.08.2020

OnHomepHast KOH(GOPMHast U TpéxmepHast (pazopaspellaloiie YUCIeHHbIE MOIEIN UCIIOIb30BaHbI 11T NCCIENOBAHMS TIPU-
POl OKCTPEMaTbHBIX BOJIH B OKeaHe. PacuéTsl ¢ KoHHOPMHOIT MOJIe/IbIO TTPOBEACHBI Ha Mepuo paBHbIi 7120 repronoB BOJHbI
muka. HeGoblime motepy sHEprun, BOZHUKAIOIIME 3a CYET €€ Iepexona B IIOACETOYHYIO 001aCTh, KOMIIEHCUPYETCSI MHTETPalb-
HBIM IIPUTOKOM SHEPIUH, TaK YTO TOJTHAsI SHEPTHs COXPAHSETCSI C TOYHOCTBIO 10 4-X 3HAKOB. PaccunTaHbl BEpOSITHOCTH TTOJTHOM
BBICOTBI BOJIHBI OT ITOIOLIBHI IO ITHKA, 4 TAKXKE BO3BBILLIEHNS OT CPENHEro YpoBHsI. OLIEHUBAETCSI HEOIIPENETEHHOCTD (IMCITEPCHSI)
BEepPOSITHOCTH. [TOATBEP3KIEHO, YTO BEPOSITHOCTD ITOJTHOM BBICOTHI BOJTHBI PABHOI JIBYM BBICOTaM XapaKTePHOM BOJTHBI PUOIN3H-
TEJIbHO COOTBETCTBYET BBICOTE OT CPEIHETO YPOBHE paBHOIA 1.2. DKCTpeMaIbHbIE BOJIHBI IOSIBIISTIOTCS CIIy4ailHBIM 00pa30M B BUIE
IPYII, pa3nejeHHbIX OONBIIMMI MHTEpBaJaMKu BpeMeHU. [umnoTtesa, mpernoaraioliiasi, YTo 3KCTpeMaJlbHbIe BOJHbI BO3HUKAIOT
Kak CyIEPIIO3UILIMS TMKOB HECKOJIBLKMX MO B OKPECTHOCTH Ipeo0Iafaolleil BOJIHbI, OKa3biBaeTCsl HeBepHOL. CIielnaTbHbIM
aHaJIM30M pachpeneiaeHus ¢da3 10Ka3aHO, YTO BbICOTA BOJHBI HE KOPPEIUpPYeT ¢ TUIOTHOCTBIO KOHIIEHTpaluu (a3 (mpeacras-
JIEHHOI KaK CyMMa BBICOT MOJI B OKPECTHOCTH ITMKA JOMUHAHTHON BOJIHBI). BEpOSTHOCTD BBICOT OOJIBIIMX BOJIH MOHOTOHHA I10
BBICOTE. DTO MO3BOJISIET MPEIITOIOKMTh, YTO BOSHUKHOBEHME OOJIBIIMX BOJH SIBJISIETCS] €CTECTBEHHBIM CBOCTBOM HEIMHEMHOTO
BOJTHOBOTO TIOJIST I TAKWE BOJTHBI TPEICTABIISIOT COOOM TUIMMUHOE, XOTSI M CPAaBHUTEIBHO penkoe sBieHre. CIIeKTp BOJIHOBOTO
I10JIsI, COCTOSIIIIETO M3 HeOOJIBIIIOrO YKcIa MO, MOXET OTPaXkaTh IIPUCYTCTBUE IKCTPEMAIbHOM BOJIHBI, HO 3TOT 3()(HEKT MOJTHO-
CTBIO MCYe3acT, KOTIa JJIMHA TaKOi BOJHBI 3HAUUTEIEHO MEHBIIE, YeM pasMephl oomactu. s @ypbe anmpoKCUMALIMKM 9KCTPe-
MaJIbHOM BOJIHBI TPEOYETCSI MHOTO MOJI, KaK JUIS alllpOKCUMAIIMU UMITYJIbCHOM (YHKIIMHU. BBICTPBIl pOCT 3KCTPEeMaTbHOM BOJIHBI
BBIIVISIIUT KaK (hOKYCHPOBKA SHEPTMU B BOJIHE, COMTPOBOXKIAIOIIASICS KOHICHTPALIME SHEPIMU B OKPECTHOCTH BOJTHOBOTO TTHKA.
MOo3KHO NTPEAIoNoKUTh, YTO SKCTPEMaIbHbIE BOJIHBI OJIM3KH 110 MPUPOJIE K Opusepam.
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The one-dimensional conformal model and the three-dimensional model for phase-resolving numerical simulation of sea
waves were used for investigation of a freak wave nature. The calculations with conformal model were done for 7120 peak wave
periods. The small subgrid dissipation of energy was compensated by integral input of energy, so, the energy was preserved with the
accuracy of 4 decimal digits. The probability of the trough-to-crest wave height, crest wave height and trough depth were calcu-
lated. The uncertainty (dispersion) of the calculated probability is demonstrated. It is confirmed that trough-to-crest height equal
to 2, approximately corresponds to the crest height equal to 1.2. Freak waves appear randomly in a form of the groups separated
with large intervals of time. The hypothesis that freak wave can appear as a superposition of modes gathering in the vicinity of a
dominant wave crest turned out to be incorrect. It was proved by a special phase analysis with the conformal model and 2D-model
that the height of wave does not correlate with the phase concentration (expressed as a sum of crest heights of modes in the vicinity
of crest of the main mode). The probability of large waves is monotonic over the wave height. It allows us to suggest that large
waves are an indigenous property of a random wave field, and they are typical though quite rare events. The spectral image of wave
field with a small number of modes can indicate the presence of freak waves, but this effect disappears completely when the length
of such wave is much smaller than the size of domain. The Fourier approximation of freak wave in such domain requires many
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spectral modes in the same way as the approximation of pulse function. The abnormal growth of wave height looks rather like the
self-focusing of single wave involving concentration of energy in the vicinity of wave peak. The breathers most closely correspond
to the nature of freak waves.

Key words: Freak waves, Benjamin-Feir instability, superposition of waves, phase analysis, breathers, Fourier image of freak waves.

1. Introduction

In current paper the freak waves in open deep ocean with no currents are considered. The most popular theory for
explanation of a freak wave phenomenon is the so-called ‘modulational instability theory’ [1] originally known as ‘ Benja-
min-Feir (B.-F.) instability theory’. The concept of this theory is quite transparent, i. ., the one-dimensional nonlinear
wave in presence of certain disturbances can produce additional modes arising in the vicinity of a main mode. Roughly
speaking, the B.-F. theory explains redistribution of wave energy in frequency space up to the final homogenization of
the initially discrete spectrum. Many scientists believe that this mechanism can explain abnormal growth of selected
modes. In case of a broad spectrum typical for the wind-generated waves, such explanation is difficult to accept. First,
it is unclear why one mode enjoys such preference and why this mode preserves its individuality in the course of its long
development in a wave field with random phases. The original B.-F. results, as well as the numerical investigations of
B.-F. [2] showed that the period of new mode growth for the typical sea wave steepness exceeds hundreds or thousands
of the carrying wave period. Thus, freak wave should undergo a long course of development. Why do not the interactions
with other waves stop this growth? Note that in many thousands of our numerical experiments with 1D and 2D-models
such process of growth of a single mode or a dense group of modes was never registered. The authors of B.-F. instability
call this process ‘disintegration’ probably keeping in mind that it does not have any creative functions.

The modulation instability theory of freak waves deals with such a vague characteristics as the Benjamin-Feir
Index (BFI) [3], the parameter calculated as a ratio of wave steepness AK), (4 is wave amplitude at spectral peak and
K, is its wave number, both being dimensional), to the spectral bandwidth AK/K,, AK being a measure of width of the
spectrum estimated as the half-width at the half-maximum of spectrum- Actually, the amplitude A at spectral peak
essentially depends on spectral resolution. The value of ‘width’ of spectrum is also uncertain since wave spectrum
normally embraces a wide range of frequencies, so the value of BFI finally depends on somewhat arbitrary quantities.

Anyway, it would be worth to emphasize that the modulation instability theory is an essentially spectral theory.
The spectral presentation seems to be effective when it describes a more or less uniform process like a nonlinear in-
teraction of waves (actually severely simplified quadruplet interactions) or energy input to waves, while it is rather
pointless when applied to the analysis of extremely rare events represented by the single or isolated multi-peak dis-
turbances of a vast wave field. Such disturbances are evidently created locally in a physical space while they cannot
manifest themselves in a wave spectrum that characterizes a large area.

No detailed data on time/space development of large waves are available, however, the results of the 2D and
3D-mathematical modeling based on full equations show that the process of ‘freaking’ is very fast while the period of
life of extreme waves is short. Such data do not prove an importance of the modulational instability theory for expla-
nation of a freak wave phenomenon. This problem was discussed and illustrated by the numerous numerical results in
[4, 2, 5]. They concluded that freak wave develops too fast to be explained by B.-F. theory (see also [6, 7].

The suggestion that freak waves can appear as a result of superposition of different modes seems more realistic.
Such theory can explain why freak waves are rare and why their life time is short. Besides, the merging of crests can
be followed by the focusing of energy. The superposition was used for reproducing wave breaking in wave channels,
but role of this effect in generation of freak waves was not investigated systematically.

Probably, the approach most close to the nature of freak waves suggests solution of Nonlinear Schrodinger (NLS)
equation [8—13] known as breathers emerging as isolated large-amplitude disturbances in a weakly nonlinear field
with narrow spectrum. Such process was observed in calculations of waves with 1 D-version of HOS model [14]. Such
disturbances can fluctuate in time and space but they preserve their individuality long enough. This solution was indi-
cated as a principal explanation of ocean freak waves [15—16]. The NLS equation is a simplified version of the initial
Euler equations for potential flow with free surface. It is shown in this paper that a similar phenomenon can predict
full nonlinear 2D-equations in the conformal coordinates (see also [17] and entire Volume 5 of Fundamentalnaya
i Prikladnaya Gidrofizika, 2012).

2. Freak wave definition and simulations

Freak wave is defined as a wave whose trough-to-crest height exceeds twice the significant wave height H, (H, =
= 40 is the significant wave height, o is the dispersion of surface). Since wave field actually consists of many ‘modes’
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and looks chaotic, the definition assumes a use of algorithm of determination of the closest minimum and maximum
points of elevation, and considers the difference between them as the trough-to-crest wave height. Unexpectedly it
was found that the statistics of the trough-to-crest height of linear and nonlinear waves at the same spectrum is exactly
identical [4, 18]. It means that the nonlinearity of wave field appears in vertical asymmetry of waves: the troughs are
smoother and the crests are sharper than those for harmonic waves. The numerical investigation of freak waves by
means of direct simulation can be done with a use of two-dimensional models like HOS model [19] or the models
based on direct solution of the equations for velocity potential [20]; as well as with a one-dimensional model based on
conformal mapping [21]. The last method is preferable, not only because this method is about thousand times faster
than any method based on 2D-model, but mainly because it gives more precise statistics of extreme waves. All the
2D-numerical models based on the straightening of surface impose restriction on the local steepness of surface and
thus understate the height of large waves. The conformal model can reproduce the steepening of waves up to a vertical
wall, which allows simulating growth and sharpening of wave up to the breaking.

The aim of this work is investigation of spectral image of freak waves. According to the modulation instability
theory, freak wave preserves its identity both in physical and spectral presentations. This statement is easy to check by
analysis of the results of a long-term simulation of wave field for reasonably steep waves.

For calculation a conformal model [21] for deep water was used. This model is described in many papers and
book [22]. The initial amplitudes were assigned with JONSWAP spectrum [23] for the inverse wave age U/c,= 1 (Uis
wind velocity, ¢, is phase velocity of peak wave). The calculations were done with 500 Fourier modes up to the time
corresponding to 7120 peak wave periods #,. The wave number of spectral peak was equal to 20. A very slow attenua-
tion of total energy was compensated by input energy, so, the energy during the entire period was preserved with high
accuracy. The statistical properties of a simulated wave field are illustrated in fig. 1 where the integral probabilities P..
and P_ of the nondimensional positive Z, and negative Z, inclination of surface as well as the probability of trough-to
crest height P(Z,,.) are given.

Abscissa axes correspond to the wave heights normalized by the significant wave height. The probability of Z,. was
calculated with a use of moving window [2]. As seen, the trough depths are considerably smaller than the heights of
wave crests. On the average, the height of waves above mean sea level Z, = 1.2 corresponds to trough-to-crest height,
so, the condition Z, = Z, / H, =1.2 can be used as a criterion for recognition of freak wave.

Note that the data on probability of wave height contain uncertainty because it is not always clear what event
should be considered as the single freak wave. The straightforward way consists of calculation of the portion of all the
records with freak waves in the total volume of the data. However, some records can belong to the single moving freak
waves. The cause of this uncertainty is the absence of strict definition of freak wave being either a case or a process.

Itwas proved in [4] that probability of trough-to-crest heights P(Z,,) forlinearand nonlinear waves isthe same. (The
vertical asymmetry of waves qualitatively explains the similarity of statistics of trough-to-crest wave height for linear
and nonlinear wave fields, but it cannot explain their close identity [ 18]. This is probably a non-trivial consequence of
conservation of dispersion (potential energy). The current calculations prove that the probability of freak waves (i. e.,
a wave with trough-to-crest height Z,. > 2) is not too small and is equal to 5 x 10~4. Since the total size of ensemble
was around 5 x 10°, the number of trough-to crest freak waves was equal to 250. Note that the integral probability

2.5

Fig. 1. Cumulative probability of trough depths P_ (curve I); crests height
P, (curve 2) and trough-to-crest height P(Z,) (curve 3).
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7, for two-dimensional waves is larger by 1—2 decimal orders than that for one-dimensional waves. This difference
can be explained by increase of freedom while choosing a minimum/maximum pair in the rectangular window: the
positions of the extremes in window do not coincide with the direction of wave propagation. When the probability of
H,, is calculated strictly along wave propagation, it turns out to be close to the probability for unidirected waves [4].
It follows that the probability of freak waves in 1D and 2D-wave fields is approximately the same.

It should be noted that the cumulative probability similar to that shown in fig. 1 is valid for quite large ensembles
of data including space and time distribution. The probability can be also calculated for an individual wave field of
size N = 8000. The results of such calculations are given in fig. 2, calculated by results of simulation [2], where the
number of points falling in a cell is shown. As seen, individual fields can include up to 50 freak waves cases with
H, > 2, or not include them at all.

The connection between H,,, H,. and H, is also valid in the statistical sense only: for example, wave peak with
height H. = 1 can belong to a wave with the total height H,. = 2.2, because this specific wave has a deep trough. Op-
positely, a wave with the crest height H. = 1.4 does not necessarily belong to the trough-to-crest freak wave. It means
that statistics of freak waves can be different for different criteria. It makes an impression that in some works the total
height of freak waves H,. was calculated simply by the doubling of crest height H,, which is certainly incorrect.

The simulation with conformal model described above was used for separation of events of freak waves designat-

ed by the criteria Z,. > 2.00. The sampling was done with interval A = 0.01, i. e. 14 times for one wave period. The
1/2

events are shown in fig. 3 where horizontal axis corresponds to time 7, expressed in peak wave periods Tp = 2n|k » |_ ,
k, = 20. Waves are shown as the vertical segments of length Z, with the bottom and top tips corresponding to Z, and
Z.. The dots mark total height Z,.. The segments show the location of freak waves in time, regardless of their location
in space. As seen, the freak waves form compact groups. It is found that all the freak waves in the group are located
closely to each other but they can temporarily attenuate when the value of Z,. drops below 2. For the entire interval of
calculations (71207, eleven periods of high activity of freak waves were observed (table). The longest period (No 11)
lasts 347,

The total duration of the groups containing freak waves is 85. The total number of freak waves registered with the
interval A = 0.07Ty, is 334. Most of these events are attributed to a single freak wave. The average life time of freak
waves is about one peak wave period 7y,

As it is shown below, long groups contain different though somehow connected with each other extreme waves. The
probability of freak waves demonstrated in fig. 1 should be understood as a ratio of the time during which such waves
existed somewhere in the domain, to the total time of observation. Naturally, with increase of domain size the portion of
freak waves will increase. (The probability of freak wave somewhere in the World Ocean is strictly equal to 1).

log,o(P)

g

MW/

)

Total number of paints: 190,337
A N T

1.0 1.2 1.4 1.6 1.8 2.0 22 2.4

Fig. 2. Probability of H,, calculated for 1 D-wave profiles, each of them including 8000
points. Contours correspond to the number of cases falling into the cells with sizes
AH,=0.02 and Alog,,P = 0.01 Dotted line is an averaged value for each bin AH,.
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Fig. 3. The time table of freak waves (Z,. > 2.00) shown as the vertical segments of length Z,. with the bottom and
top tips corresponding to Z; and Z,. Abscissa corresponds to time expressed in peak wave period. The dots in top of
the panel indicate the value of Z,.. The duration of each period is given in table.

Table

Characteristics of the groups shown in fig. 3: Tlf is the time of appearance of wave with height Z,. > 2.00; A7, is a duration

of the group (both are expressed in peak wave periods); Z,. is the maximum trough-to-crest height in the group

No 1 2 3 4 5 6 7 8 9 10 11
T 171 825 2486 2491 3394 3861 4012 4498 5967 6463 6904

AT 11 4 2 1 14 4 10 2 1 2 34
zr 2.25 2.02 2.07 2.03 2.18 2.09 211 2.01 2.18 2.02 2.10

It was suggested in [4] that freak wave can appear as a superposition of different modes. To check up this state-
ment, the special processing of a great amount of wave profiles containing freak waves was performed. Firstly, the
phases for every peak of each Fourier mode were calculated. Then all the amplitudes of modes falling in the same
x-positions were summarized for the entire period of integration (7120 peak wave periods). Finally, the fields of
‘phase density’ P expressed in total sums of mode amplitudes for each cell of domain were calculated. If all crests
of modes were incidentally concentrated in one point, then the crest height of wave would be equal to the sum of
all amplitudes of modes (in our case it is approximately 1.7H,). Then the ‘phase density’ was averaged in the close
vicinity of each peak of freak wave (denoted by Ff ) and normalized by the averaged over all domain phase density
P: P, =P /P.

The value of P, describes the relative excess of the local phase concentration above the averaged over the phase
density of the entire domain. The dependence of Z,. on 13,1 is shown in fig. 4. Most of the points fall on the small values
of P, ~1. Large values of P, are distributed irregularly, and Z, does not
show any tendency for increase with growth of I_’n . This result does not

depend on the choice of width defining ‘vicinity’ of wave peak. 2925 Fs ]
The calculations described above were repeated for a set of two-di- . .,
mensional wave fields. For analysis 1100 wave fields were used with 220 3 1

resolution 1024 x 2048 points generated by the model described by
Chalikov (2016). The number of modes was 256 x 512, the peak wave N
number was equal to 20. The difference between the 1D and 2D-cases
is that in a 2D-case the modes can come to any point under different
angles. The phase density for peaks of all the modes was calculated in
the 2D-vicinity of each peak found in the ‘jumping window’ with size
37 x 37 points. The algorithm allowed us to recognize nearly all of the
local wave peaks. Such cumbersome calculations gave the same results
as for one-dimensional waves: height of peaks turned out to be inde-
pendent of phase concentration.

The periods of high activity of freak waves as a rule contain a group Fig. 4. Dependence of trough-to-crest wave
of freak waves. It is well seen in the example of time/space distribution height Z,, on the relative ‘phase density’ P, .
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of elevation in fig. 5 (see Inset) where elevation is indicated with different colors (see legend and fig. 6 where the
fragment of fig. 5 is given). Freak waves are marked with red dots which form short segments corresponding to an
individual wave.

It is interesting to compare the evolution of wave field in fig. 5 with the evolution of spectrum in time/wave number
space given in fig. 7 see Inset. The spectrum peak falls at wave number k£ = 18. During the first period of high activity of
freak waves (5980 < 7, < 5995) the spectrum is closer to a single-peak shape. Starting from 7, ~ 6030 (second period)
the spectrum obtains the three-peak structure because of the growth of two modes at wave numbers £ = 15 and k£ = 19.

Time interval starting from 7, = 6030 is characterized by low freak wave activity (see fig. 5). The 1D-wave spec-
trum obtained by averaging over different periods is given in fig. 7.

The first period corresponds to high activity of freak waves while the second period contains no freak waves. As
seen in fig. 8, additional modes at k = 19 and k£ = 23 appear in the second period. The amplitudes of these modes are
even a little larger than the amplitude of carrying mode. Almost certainly these modes were developed as a result of
Benjamin-Feir instability. After appearance of these modes the energy became distributed in k-space more uniformly
and the conditions for freak wave formation became unfavorable. Hence, in this case the modulation instability rath-
er reduces the number of freak waves since freak waves more likely appear at unimodal wave spectrum. This rule can
be confirmed by the analysis of other groups shown in fig. 3.

It is reasonable to suggest that freak wave appears close to the peak wave frequency, later being somehow en-
forced. It was discussed before that the mechanism of mode superposition should be rejected as not existing. The
theory of modulation instability claims that one or several modes in the vicinity of carrying mode, begin developing
abnormally, taking the energy from the spectral environment. The problem is that this effect is difficult to investigate
in a spectral space. Even if such mechanism does exist, it can be observed when the total number of modes is small
and the physical domain is limited, which is typical for laboratory conditions. In real ocean the spectrum character-
izes large space, and any single event of extreme wave cannot be pronounced in Fourier space.

The spectral composition of all 334 registered freak waves was investigated with special calculations. Firstly, am-
plitudes a, and phases 3, for all 500 modes were calculated for every case. Then the elevations Az;(x;) contributed by
each Fourier modes were calculated:

2 (x;) = ay cos(kx; +9,.), (1)

where X; is the x-coordinate of freak wave peak with Z,, > 2.00.
The nondimensional cumulative elevation Zy normalized by the crest wave height Z,

Z.(K)=z." ﬁAsz, 2)
k=1

provided by the modes with k <« K as a function of K'is shown in fig. 9.

The modes with wave numbers k < k, contribute only 30 % to the wave crest height; the modes with wave numbers
k <2k, give 70 %, the modes with wave numbers k < 4k, give 90 %. Negative values of Z, in a vicinity of K= 10 mean that
low wave number modes are not in phase with phase of maximum in given point. Wave becomes a true freak wave when
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Fig. 8. Wave spectrum obtained by averaging over intervals (5980 < 7, < 5993) (solid curve) and
(6036 < T, < 6042) (dotted curve).
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Fig. 9. Cumulative contribution Z, of modes with wave numbers k < K nor-
malized by crest height Z, as a function of K. Vertical line shows peak wave
number k, = 20. White curve is the result of the averaging over all 334 events.

the remaining 10 % of the high-wave-number modes contribute to its height. Hence, we could come to a conclusion
that in orchestration of freak wave the entire wave spectrum participates. It is nonsense, of course. Fourier series exactly
approximates any surface, but isolated perturbations require many high wave number modes for their approximation.

3. Conclusion

Adiabatic equations of wave motion are self-similar, i. e. after their normalizing by use of the significant wave
height and acceleration of gravity, for example, the statistical characteristics of waves become universal for the same
nondimensional initial conditions. However, a pure adiabatic motion does not exist since the nonlinearity of equa-
tions produces transformation of spectrum and loss of energy due to the energy tendency to leave the computational
domain. Since such processes are very slow, it is possible to support the total energy and consider the motion as
adiabatic or quasi-adiabatic. Such method was used in the current paper for generation of a more or less uniform en-
semble of wave surfaces. This approach is very convenient since the nondimensional equations assume reproduction
of infinite of situations that differ from each other by a single multiplicative parameter.

In fact, the engineering practice does not require the nondimensional results. The probability of nondimensional
freak waves is high: one wave out of two thousand waves turns out to be freak. A dimensional freak wave with height of
1 m is definitely dangerous and can be obviously called “a monstrous wave” by inhabitants of the Lilliputian land. Such
wave can be freak wave in a nondimensional space. Since the significant wave height provides quite a robust scaling, the
really dangerous waves can appear in a stormy sea only when the wave energy is high enough. A widely known Draupner
wave with the height above mean level equal to 18.5 was registered when the significant wave height was 12 m. The nondi-
mensional wave height Z, was equal to 1.54. The approximation of probability for the crest wave height presented in [18].

P(Z.)=exp(-397Z,-4.022]) 3)
gives the probability of such wave P(1.54) = 1.6 x 10~7. It is interesting to note that the probability of trough-to- crest
height estimated using the data from the above cited paper should be around 10~. The contradiction can be explained
by the anomalous shallow trough of Draupner wave. i. e. Z, = 7.1 m, though, according to the statistical data, it
should be about 9.5 m. Probably such nonstandard ratio of the crest height to trough depth can be explained by the
nonlinearity due to the small depth H =70 m.

Naturally, the probability of nondimensional freak waves is much higher than that of real waves, as the height of
real waves is proportional to significant wave height. The stronger the averaged waves the higher freak waves. Since

the dimensional wave with specific height H CO can be generated with various probability at different significant wave

heights, the cumulative probability Pof H, > H CO should be calculated by summation over all the values of the signif-

icant wave height in the interval 0 < Z, < 1.85 (the values above 1.5 were not registered.)

P(H >H])=Y P(Z.>Z2,)P,(H,>H))aH,, 4)
H

where AH is the interval to which value H; is referred [11].

11
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Considering the practical application of the theory of rare waves, we can also come to the conclusion that a con-
ventional ‘definition’ of dimensional freak waves is not required at all. For better use of research recommendations, it
would be more efficient to define the categories of freak waves, as it has been done, for example, for tropical storms.
A reasonable warning on appearance of such waves should sound as follows: ‘from 6 am today until 6 am tomorrow in
a specific area of 100 x 100 km? a wave as high as 10 m (category three) will be one of 1000 £ 200 waves; a wave with
height of 15 m (category five) will be one of 8000 = 1000 waves,... etc.” The warning can be also expressed it terms
of expecting time. The data on the scatter of wave probability demonstrated in fig. 2 show that with no indication of
confidence intervals the forecast of extreme waves is senseless. The methods of wave forecasting should be different
for different purposes. For example, for navigation purposes the forecasts should take into account duration of a
forecasting period, while for climate research targeted at construction projects the estimation should give extreme
values for long periods. The environmental conditions in different areas of ocean are different, depending on wind,
currents statistics and bathymetry; hence, the forecast should be based on the local observations. Such data can also
be obtained with a spectral wave model. In this case a method of interpretation of spectral data in terms of the wave
height probability should be suggested [18]. For limited domains the statistical data on waves can be generated with
the phase-resolving finite-difference models developed at Technical University of Denmark [24].

The nature of freak waves still remains unclear. The modulational instability is unable to explain the suddenness
and short life of freak waves. The multiple numerical simulation of Benjamin-Feir instability [2] demonstrated an
excellent agreement with the theoretical results, but never predicted an abnormal growth of separate modes signifi-
cantly exceeding the mean wave height. Extreme waves appeared suddenly after the B.F. instability had filled up
empty intervals of spectrum. The approximation of wave field by superposition of harmonic modes gives true statistics
for trough-to-crest height only and significantly underestimates the probability of wave crests. The approximation of
wave field by superposition of Stokes modes gives essentially the same results due to small steepness of real waves.
Chalikov and Babanin (2016) put their faith in mechanism of superposition of different modes leading to extreme
wave formation. A thorough analysis performed in the process of work on this paper proved that the density of phase
concentration does not correlate with the local wave height; hence, the effect of superposition cannot be responsible
for freak waves.

The question arises: why are freak waves considered as an outstanding phenomenon? The simulations with non-
dimensional equations show that such waves are not so infrequent. Natural freak waves are rare only because the
stormy conditions are exceptional. The definition of freak wave as a wave whose height exceeds 2 H, looks unjustified.
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Fig. 10. Example of a simulated wave. In panels a, b the horizontal axis is a distance: panel a represents succes-

sive profiles (separated by the interval Az=0.02) of the largest wave within a time range from 7= 5.06 (H,=2.10

at = 2.28 periods) up to the overturning moment at 7= 7.15 (3.22 periods); b — corresponding to (a) evolution

of columnar energy e,; panel ¢ shows time evolution of maximum values of total E,,, columnar kinetic (£}),
potential (£}) and total (£) energy.
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Why only 2? On the average, there are 7 times more waves with height 1.9H, while there are 7 times less waves with
height 2.1 H,. The probability of large waves is monotonic over wave height. It seems a lot more reasonable to suggest
that large waves are an indigenous property of a random wave field, and they are typical though quite rare events. The
spectral image of wave field with a small number of modes can indicate the presence of freak waves, but this effect
disappears completely when the length of such wave is much smaller than the size of domain. Fourier approximation
of freak wave in such domain requires many spectral modes in the same way as the approximation of pulse function.

The details of the extreme wave development are given in fig. 10 obtained in the process of simulations of freak
waves with conformal model [21]. Freak wave is developing just over two wave periods. The energy in peak column
grows approximately 10 times over this period of time. The evolution of energy averaged throughout the trough to
trough interval (which is assumed to be overall energy of the chosen wave) as well as the maximum of energy at wave
peak are given in panel b.

The most surprising feature of this picture is that the total energy of developing wave remains nearly constant
(it cannot be an exact constant as the domain has open boundaries), while its peak value grows dramatically. In
other cases, the total energy of certain waves is even slightly decreasing. It proves that the freak wave goes through a
self-amplification phase with no substantial exchange of energy with other waves.

Therefore, any considerations of freak wave generation in Fourier space are pointless: just one wave in a wide
set of similar waves unpredictably begins developing fast, accompanied by powerful concentration of energy in the
vicinity of wave peak. Evidently, it is the main property of extreme wave, which makes the largest of them a freak
one. The mechanisms of this evolution are still unknown; the prediction of time and location of wave development
(“freaking”) is impossible even in numerical experiments. Fortunately, enough, such knowledge would not make any
sense for practical use.

Much more important are the statistics of such events and mechanical characteristics of freak waves. The above
problem is similar to that of the numerical forecast of thunderstorms: the atmospherics model can predict a possibility
of storm generation in cell of a numerical model, but not the exact location and time of such events.

In our opinion, the most likely cause of freak wave is the concentration of energy in a physical space. The Fourier
transformation surely reflects this process just because it provides an exact approximation of surface, but interpreta-
tion of this image in terms of freak waves is possible only if the length of such wave is not too small as compared with
the size of domain.
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Fig. 5. Time and space evolution of elevation for the period
T'=(5979—-6050) T,,. Freak waves are marked with red color.

5994
5992
5990
5988
5986
5984
5982
5980

Fig. 6. Fragment of fig. 5 (its left bottom corner). It is seen

that the entire group consists of individual freak waves

remaining in ‘freak capacity’ for about one peak wave
period. The entire group existed about 10 periods.
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Fig. 7. Evolution of wave spectrum expressed in amplitudes
of Fourier modes in time/wave number space during the
period corresponding to that in fig. 5.



