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МОДЕЛИРОВАНИЕ ЛИДАРНЫХ ИЗОБРАЖЕНИЙ ВНУТРЕННИХ ВОЛН  
ПО РЕЗУЛЬТАТАМ ИЗМЕРЕНИЙ ГИДРООПТИЧЕСКИХ  

И ГИДРОФИЗИЧЕСКИХ ПАРАМЕТРОВ В СЕВЕРНЫХ МОРЯХ 
 

На основе проведенных натурных измерений глубинных профилей  гидрофизических и 
гидрооптических характеристик в Белом, Баренцевом и Карском морях проведено моде-
лирование лидарных изображений внутренних волн (зависимостей эхо-сигнала лидара 
от его горизонтальных координат, глубины, с которой приходит сигнал и параметров 
внутренних волн). Показано, что изображения внутренних волн, в зависимости от вер-
тикального распределения гидрофизических и гидрооптических параметров и их соче-
тания, имеют  достаточно сложную и разнообразную структуру. 
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Важной задачей экспериментальной океанологии является исследование оптиче-

ских проявлений гидрологических структур и процессов в морской толще. Конечной це-
лью этих исследований является решение обратной задачи: восстановление гидрофизи-
ческих полей (внутренних волн, турбулентности) по измеренным пространственным 
распределениям первичных гидрооптических характеристик (ПГХ).   

В настоящее время получили широкое распространение методы дистанционного 
лазерного (лидарного) зондирования океана, которые в отличие от контактных методов 
позволяют получать информацию о пространственной изменчивости ПГХ на больших 
акваториях с малыми затратами времени. В частности, лидарные методы удалось ис-
пользовать для регистрации внутренних волн (ВВ), которые обнаруживаются лидаром 
благодаря тому, что они нарушают горизонтальную однородность профилей ПГХ (см., 
например, [1]). Проблема количественной оценки параметров ВВ лидарным методом ис-
следовалась в работах [2–4], где были предложены аналитические модели лидарных 
изображений ВВ и алгоритмы восстановления поля ВВ по этим изображениям с исполь-
зованием данных о невозмущенных профилях ПГХ и плотностной стратификации.  

Лидарным изображением называют [2–4] эхо-сигнал P(r, zt) как функцию горизон-
тальных координат лидара r и глубины 2/vtzt = , с которой сигнал приходит. При фик-

сированном положении лидара он формирует одномерное изображение водной среды 
)( tzP , которое несет определенную информацию о вертикальной неоднородности ПГХ. 

При горизонтальном перемещении лидара в направлении x и фиксированной ориентации 
его оптической оси формируется двухмерное изображение ),( tzxP , позволяющее рас-

считывать горизонтальную изменчивость профилей ПГХ. 
В отсутствие гидрофизических возмущений и при постоянстве ПГХ на фиксиро-

ванной глубине функция ),( tzxP  на данной глубине tz  – константа. 

Внутренние волны и другие гидрофизические возмущения могут наблюдаться ли-
даром благодаря тому, что под их влиянием вертикальные неоднородности ПГХ транс-
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формируются в горизонтальные. Ясно, что если бы стратификация ПГХ отсутствовала, 
вертикальное смещение жидкости не привело бы к изменению сигнала при движении 
лидара и ВВ были бы не видны. Если ( )zσ  – исходное (не возмущенное внутренней 
волной) вертикальное распределение некоторой ПГХ (например, показателя обратного 
рассеяния )(zbb ), а ( , , )x z tζ  – поле вертикального смещения жидкости, то пространст-

венное распределение этого параметра в поле ВВ будет иметь вид [2]: 

                           [ ]( , , ) ( , , )r z t z r z t′σ ≈ σ − ς� �

,    (1) 

т.е. воздействие ВВ  на распределение σ  проявляется в «искривлении» изолиний этого 
распределения. А искривление изолиний ПГХ, в свою очередь, проявляется в лидарном 
изображении – мощности эхо-сигнала. Таким образом, чтобы восстановить поле ВВ ζ , 
надо из лидарного сигнала P  найти распределение некоторой ПГХ ( )z′σ , а затем ре-
шить уравнение (1) относительно ζ . Однако для решения этой обратной задачи необхо-
димо сначала решить прямую задачу: моделирование  лидарных изображений ВВ по за-
данным распределениям ПГХ и функции ( , , )x z tζ . Эта прямая задача и решалась в дан-
ной работе  по результатам измерений гидрооптических и гидрофизических параметров 
в Баренцевом, Белом и Карском морях. При этом для   расчета мощности эхо-сигнала, 
приходящего из водного слоя использовалась формула, полученная Л.С. Долиным с уче-
том поля ВВ ( , , )x z tζ  [3, 5]: 

2 2
2 2( , ) ( / 4) ( , ) ( , ), / 2,bt t t t

P x z W r b x z F x z z t′= ν π ϑ = ν                          (2) 
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здесь v – скорость света в воде, м/с; W  – энергия зондирующего импульса, Дж; 21,rr  – 

радиусы пучка и входного зрачка приемника, м; 1 22 ,2ϑ ϑ  – апертурные углы источника и 

приемника (рад.);  

[ ]( , , ) ( , , )c x z t c z r z t′ ≈ − ς � ; 

                                          [ ]( , , ) ( , , )b bb x z t b z r z t′ ≈ − ς � ;                                                (3) 

[ ]1 1( , , ) ( , , )b x z t b z r z t′ ≈ − ς � ; 

[ ]2 2'( , , ) ( , , )x z t z r z t< γ > ≈< γ > −ς � , 

где bb  – показатель обратного рассеяния, м-1; c – показатель ослабления, м-1; b1= b - 2bb – 

показатель «малоуглового» рассеяния, м-1; b – показатель рассеяния, 2< γ >  – дисперсия 
индикатрисы малоуглового рассеяния. Формулы (3) следуют из (1). 

Метод измерения гидрооптических и гидрофизических параметров. Как видно 
из формулы (2), лидарный сигнал зависит от нескольких ПГХ: показателей ослабления 

(), рассеяния (b) и обратного рассеяния (), а также дисперсии индикатрисы  2< γ > . По-
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видимому, проблема восстановления глубинных профилей ПГХ не имела бы однознач-
ного решения, если бы эти ПГХ изменялись бы с глубиной независимо. Однако, как по-
казано в [6], все они в середине видимой области спектра, где работают все океаниче-
ские лидары, могут быть выражены через показатель ослабления с: 

b = 0.94 с – 0.048, bb = 0.018 с, 2< γ >  = 0.021 + 0.7656 bb / b.                            (4) 

Формулы (4) справедливы в диапазоне с = 0.3 – 2.5 м-1, т.е. для прозрачностей воды 
по белому диску порядка 2–20 м, в пределах которых изменяется прозрачность в север-
ных морях. 

Таким образом, для расчета лидарного сигнала достаточно измерить  глубинный 
профиль показателя ослабления, а остальные ПГХ рассчитать по формулам (4). 

Для измерения показателя ослабления использовалался разработанный нами про-
зрачномер, предназначенный для измерений в прибрежных водах. Пределы измерения с 
– от 0.3 до 6.0 м-1, предельная точность – около 1 % для c  = 1 м-1 (прозрачность по бело-
му диску bz  ≈ 6 м), около 2 % для  c  = 0.5 м-1 ( bz  ≈ 12 м) и около 4 % для c  = 0.25 м-1 
( bz  ≈ 20 м). Подробное описание прозрачномера дано в [7].  

Для измерения температуры и электрической проводимости морской воды исполь-
зовались серийные зонды отечественного и западного производства (ОЛД-1 – НПО 
«МАРС», SBE-19 – Германия, FSI – США). 

Давление, температура, электропроводность и показатель ослабления регистриро-
вались при погружении от поверхности до дна соединенных вместе и закрепленных на 
тросе зондов. Одновременно проводился замер глубины видимости диска Секки. Дан-
ные гидрологических зондирований обрабатывались c использованием стандартных па-
кетов программ, входящих в комплект зондов; также при их помощи измеренные темпе-
ратура и электропроводность пересчитывались в плотность. Гидрооптические измерения 
обрабатывались при помощи программ Measurement Studio и Microsoft Exel. Осреднение 
данных проводилось с дискретностью по глубине через 1 м. Окончательная обработка 
океанологической информации выполнялась на персональном компьютере с помощью 
прикладной программы Surfer. 

Всего с 2006 по 2010 г. в 10 экспедициях автором было выполнено 285 совместных 
измерений гидрологических и гидрооптических характеристик: в центральной и юго-
восточной частях Баренцева моря – 80, в Белом море – 150, в юго-западной части Кар-
ского моря и проливе Карские Ворота – 55.  

Метод и алгоритм расчета лидарных изображений. Метод и алгоритм  расчета 
основан на моделировании лидарных изображений одномодового поля ВВ ( , , )r z tς �  с за-
данной амплитудой на основе данных об измеренных вертикальных профилях темпера-
туры, солености и плотности  воды и показателя ослабления. Для описания ВВ, так же 
как и в [2–4], использовалась модель Грена, в соответствии с  которой структура 1-й мо-
ды ВВ характеризуется функцией  

( )0( , , ) sech sech sinkd kdz h z h
x z t t kx

d d

− +    ς = ς − ω −    
    

                     (5) 

с двумя параметрами плотностной стратификации, один из которых (d) характеризует 
толщину пикноклина, а другой (h) – глубину его залегания; 0ζ  – максимальная амплиту-

да первой моды (в случае синусоидальной волны 0ζ  = cont; при цуговом строении волн 

размах колебаний меняется от нуля до максимального значения – в работе модуляция 
цуга принята синусоидальной), ω  – частота ВВ, 2 /kλ = π  – длина ВВ. Расчеты  прово-
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дились для длины волны λ = 20 м при разных значениях ω/N0, где 0N  – максимальное 

значение частоты Вяйсяля ( / )( / )N g d dz= ρ ρ , ρ – плотность воды, 0ζ  = 2 м. Волновое 

число 2 /k = π λ  определялось из дисперсионного соотношения 

0/
( 1)( )

kd
N

kd m kd m
ω =

+ − +
 (m – номер моды), период волны 2 /T = π ω. 

Структура алгоритма моделирования лидарного изображения поля ВВ с задан-
ной амплитудой показана на рис. 1.  

 
 
 
 
 
 
 
 
 
 
 
 
Рис. 1. Схема алгоритма моделирования лидарных изображений внутренних волн. 

 
Исходными данными для моделирования служат профили показателя ослабления 

света c(z), температуры T(z) и электропроводности S(z) воды; амплитуда и номер моды 
ВВ; параметры лидара (W – энергия зондирующего импульса, Дж; r1, r2 – радиусы пучка и 
входного зрачка приемника, м; 2ϑ1, ϑ2 – апертурные углы источника и приемника, рад. 
Расчеты проводились для параметров, соответствующих реальному  лидару, имеющемуся 
в Лаборатории оптики Института океанологии РАН: W = 0.4 Дж, r2 = 0.1 м, ϑ2 = 0.035 
(2 град.), r1 = 0.005 м,ϑ2 = 0.003. Предполагалось, что лидар перемещается в направлении 
волнового вектора (ось x) со скоростью, существенно превышающей скорость распро-
странения ВВ, так что структура изображения определяется распределением ς при t = 0.  

Структура лидарного изображения ВВ определяется возмущениями, вносимыми 
ВВ в пространственное распределение ПГХ, которое зависит как от невозмущенных 
профилей ПГХ, так и от поля вертикальных смещений жидкости в ВВ. Поэтому алго-
ритм моделирования  включает гидрооптическую  и гидродинамическую части. 

Гидродинамическая часть алгоритма включает: расчет глубинного профиля плот-
ности воды ( )zρ  по измеренным профилям температуры и электропроводности; опреде-
ление параметров пикноклина (с глубиной h и толщиной d), профиля частоты Вяйсяля 
N(z) и, после задания амплитуды, – частоты и номера моды ВВ, а также расчет поля вер-
тикальных смещений жидкости ( , , )x z tς .  

Гидрооптическая часть алгоритма предусматривает: определение показателей пол-
ного b, обратного bb и малоуглового b1 рассеяния  и дисперсии индикатрисы малоуглового 
рассеяния <γ2> по измеренным профилям c(z) с помощью корреляционных связей между 
различными ПГХ – формулы (4); расчет пространственного распределения ПГХ в поле 
ВВ по (3) в предположении о малости амплитуды ВВ по сравнению с вертикальным мас-
штабом неоднородности поля ( , , )x z tς ; расчет лидарного изображения ВВ по (2). 

Алгоритм реализован в виде компьютерной программы в среде MATHCAD. Время 
счета отдельной реализации сигнала обратного рассеяния в зависимости от требуемой 
дискретизации по глубине и максимального значения глубины в конкретных расчетах 
составляло от нескольких минут до одного часа.  

Измерение c(z) 

Расчет плотности ρ(z) Расчет основных ПГХ  

Расчет ПГХ в поле ВВ Расчет поля ВВ 

Параметры лидара Лидарное изображение ВВ 

Измерение T(z), S(z) 
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Результаты измерений и расчетов. Были проведены расчеты для 30 станций в Бе-
лом, Баренцевом и Карском морях, на которых измерялись профили температуры, соле-
ности и показателя ослабления. 

На рис. 2, а–ж приведены примеры результатов моделирования лидарных изобра-
жений внутренних волн в виде линий уровня величины ),(log10),( zxPzxL =  (P – мощ-
ность эхо-сигнала, Вт) (справа), а также исходные данные – профили условной плотно-
сти воды, показателя ослабления света и температуры (слева) – для типичных станций в 
Белом, Баренцевом и Карском морях.  

Ниже в таблице приведены параметры модели Грена для указанных станций. 
 

Параметры модели Грена для выбранных станций, м 
 

Пикноклин 
Станция, год 

глубина  толщина  ω/N0 

Белое море: 
№ 10, 2010 

 
9 

 
6 

 
0.8 

№ 15, 2010 5 6 0.8 

Баренцево море: 
№ 1, 2006 

 
40 

 
10 

 
0.87 

№ 49, 2009 7 6 0.8 
Карское море: 
№ 59, 2010 

 
12 

 
4 

 
0.75 

№ 60, 2010 20 10 0.87 
№ 68, 2010 11 8 0.84 

 
 
 

а  
 

Рис. 2. Результаты моделирования лидарных изображений внутренних волн. 
Слева – профили плотности, температуры, показателя ослабления, справа – соответствующие 

им результаты расчета лидарных изображений внутренних волн в виде линий уровня величины  
),(log10),( zxPzxL = . 

а, б – Белое море, в, г – Баренцево море, д, е, ж – Карское море. 

Ст.10 
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б  
 

в  

г  
 

Продолжение рис. 2. 

Ст.15 

Ст.1 

Ст.49 
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д  

е  

ж  
 

Окончание рис. 2. 
 

По результатам проведенных расчетов можно выделить несколько типовых случаев: 
1. Распределение плотности имеет ярковыраженный скачок, а показатель ослабле-

ния мало меняется от поверхности до дна. Такая ситуация приведена на рис. 2, б (ст.15 в 
Белом море – показатель ослабления меняется от 0.4 м-1 у поверхности до 0.36 м-1 у дна). 

Ст.59 

Ст.68 

Ст.60 
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В этом случае внутренние волны не проявляются в сигнале обратного рассеяния или 
проявляются очень слабо. 

2. Распределения плотности и показателя ослабления имеют ярковыраженные 
скачки. Такая ситуация приведена на рис. 2, а, в (ст.10 в Белом море и ст.1 в Баренце-
вом). В этом случае ВВ проявляются в виде синусоидальных кривых в слое скачка и 
кривых в противофазе ниже слоя скачка. 

3. Распределение плотности имеет ярковыраженный скачок, а в распределении 
показателя ослабления имеются отдельные ярковыраженные слои. Такие ситуации при-
ведены на рис. 2, г, д, е, ж (ст.49 в Баренцевом море и ст.59, 60, 68 в Карском). В этом 
случае ВВ проявляются в эхо-сигнале наиболее сложным образом. Непосредственно в 
выделенном слое внутренние волны проявляются в виде синусоидальных структур, над 
слоем – в виде нерегулярных бочкообразных структур, ниже выделенного слоя – в виде 
синусоидальных структур, колеблющихся в противофазе. Наиболее сложная ситуация 
наблюдается на рис. 2, д, когда в распределении показателя ослабления имеется множе-
ство отдельных ярко выраженных слоев. Внутренние волны проявляются в виде слож-
ных нерегулярных структур. 

Проведенные расчеты показывают, что изображения ВВ в зависимости от распре-
деления гидрофизических и гидрооптических параметров и их сочетания имеют доста-
точно сложную и разнообразную структуру. Можно также заключить, что приведенный 
метод и алгоритм моделирования изображений ВВ являются эффективным средством 
прогностических оценок возможностей лидарного наблюдения ВВ малой амплитуды в 
заданных районах и уточнения механизмов формирования изображений ВВ. Алгоритм и 
программа могут также послужить основой для разработки методов восстановления по-
ля ВВ по его лидарному изображению. 

Автор выражает благодарность И.М. Левину за полезные советы и замечания. 
Работа поддержана  РФФИ, грант 10-05-00311а. 
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