Научные сообщения

УДК 551.465.41

© К.Ю. Булгаков 1 , М.С. Молчанов 2 , 2011

 1 Санкт-Петербургский филиал Института океанологии им.П.П. Ширшова РАН

²Российский государственный гидрометеорологический университет, Санкт-Петербург bulgakov.kirill@gmail.ru

ИСПЫТАНИЕ СХЕМЫ ТУРБУЛЕНТНОГО ПЕРЕМЕШИВАНИЯ, ОСНОВАННОЙ НА ТЕОРИИ ПОДОБИЯ, В МОЛЕЛИ БАЛТИЙСКОГО МОРЯ

Рассмотрена схема турбулентного перемешивания в океане, основанная на теории подобия. Приведена ее модификация для использования в трехмерных моделях циркуляции океана. Проведены климатические расчеты с моделью Балтийского моря, в которой применялась как вышеупомянутая схема, так и схема, построенная на уравнении кинетической энергии турбулентности. Показано, что применение схемы, основанной на теории подобия, позволило в целом улучшить воспроизведение вертикального распределения температуры и солености.

Ключевые слова: турбулентное перемешивание, конвективное перемешивание, модель циркуляции океана.

За последние два десятилетия было достигнуто значительное улучшение качества воспроизведения циркуляции океана с помощью математических моделей. В большей степени это было обусловлено развитием вычислительной техники и активным применением параллельных вычислений, что позволило использовать высокое разрешение, сопоставимое с масштабами большинства процессов, определяющих гидрологический режим. Тем не менее далеко не все проблемы могут быть решены с увеличением разрешения. Одна из этих проблем – воспроизведение вертикального турбулентного обмена в океане, для описания которого в настоящее время не существует единого подхода (подобного теории подобия Монина-Обухова для атмосферного приземного слоя). Если в приповерхностном квазиоднородном слое океана градиенты плотности малы, вследствие чего там наблюдается развитая турбулентность, что позволяет применять стандартные методы ее описания, то в термоклине турбулентность в классическом смысле практически отсутствует. В сильностратифицированной среде турбулентность, генерируемая сдвигом скорости и обрушением волн, быстро подавляется. Перемешивание осуществляется в перемежающемся режиме, возникающем в результате локальной динамической неустойчивости. Между тем даже в этом случае турбулентное перемешивание остается значительно интенсивнее молекулярной диффузии. Поэтому диффузия тепла и соли через термоклин оказывает решающее влияние на эволюцию верхнего слоя океана. Механизмы турбулентного обмена в термоклине изучены недостаточно. Однако основные процессы, влияющие на перемешивание в стратифицированной среде, более или менее известны (см. [1-5]): разрушение внутренних волн; локальная динамическая неустойчивость, связанная со сдвигом скорости; двойная диффузия.

Полное математическое описание этих процессов пока не дано. Помимо этого, их характерные масштабы (1 см : 1 м) не только несопоставимы с горизонтальным разрешением современных моделей (1–10 км), но и меньше вертикального (1–10 м). Поэтому описание турбулентности, за редким исключением, основано на так называемой параметризации. Термин «параметризация» можно определить как математический метод описания мелкомасштабных (подсеточных) процессов в терминах крупномасштабных переменных.

Обзор многих применяемых в настоящее время схем вертикального перемешивания дан в работе [6], где показано, что каждая из схем имеет свои недостатки, так что выбор оптимального алгоритма для океанской модели остается делом вкуса. В указанной работе также предложена модификация метода, основанного на теории подобия, что и в работе [7].

Непоследним обстоятельством, влияющим на выбор конкретной модели, являются ее экономичность, удобство и хорошая согласованность с используемой крупномасштабной моделью.

Схема, основанная на теории подобия. Основная идея теории подобия для верхнего слоя океана была сформулирована при оценке временных масштабов инерционности поля плотности и динамических полей (таких, как энергии турбулентности, импульса). Было показано, что динамическое приспособление верхнего слоя океана к поверхностному возбуждению происходит по крайней мере на 2-3 порядка быстрее, чем приспособление поля плотности. Поэтому характеристики динамических полей, осредненные за несколько часов, могут быть описаны в терминах внешнего динамического воздействия, тогда как благодаря большой плотности и теплоемкости воды внешний поток массы не может быть определяющим, а вертикальный поток плотности постоянным по глубине. Отказ от этого предположения не приводит к противоречию с теорией подобия, но заставляет вводить интегральный параметр стратификации, основанный на вертикальном профиле плотности, а не на внешнем потоке массы. При этом оказывается, что динамическое состояние на любой глубине в верхнем слое океана является функцией поверхностного возбуждения и интегральных характеристик стратификации во всем вышележащем слое. Эта простая концепция, предложенная в [7], была дополнена в работе [6] рядом уточнений, повышающих согласование с данными наблюдений.

Коэффициент турбулентности в [6] представляется как сумма двух составляющих – $k = k_w + k_u$, где k_w определяет перемешивание, генерируемое сдвигом скорости течения и зависящее также от стратификации, вводимой интегральным параметром St:

$$k_{w} = \left(\kappa \left(z + z_{0}\right)^{2}\right) \frac{\partial V}{\partial z} (1 + \alpha S t)^{-\beta},$$

$$\begin{cases} S t = \frac{g}{\rho_{0} v_{*0}^{2}} \int_{z(\min(\rho))}^{H} \left(\rho(z) - \min(\rho)\right) dz, \ z \geq z \left(\min(\rho)\right) \\ S t = 0, \ z < z \left(\min(\rho)\right) \end{cases};$$

$$(1)$$

 ρ – потенциальная плотность; κ – постоянная Кармана; α , β , ν_{*0} – константы. Параметр β принимает различные значения (β_s , β_u) для устойчивой и неустойчивой стратификации (соответственно). В формуле (1) z_0 – параметр шероховатости, который в данном случае имеет смысл глубины перемешивания, создаваемого разрушающимися волнами.

Сравнение с экспериментальными данными показало, что схема наиболее чувствительна к параметрам α и β , а параметр ν_{*0} может быть фиксирован (в дальнейшем при-

мем его равным 0.01). Чтобы рассчитать k_u (перемешивание за счет конвекции), находим минимальную глубину, на которой выполняется следующее условие

$$\frac{1}{z} \int_{z}^{0} \rho(z) dz \ge \rho(z). \tag{2}$$

Эта глубина считается глубиной неустойчивого слоя $z_{\rm mix}$, а интеграл

$$\rho_M = \frac{1}{z_{\text{mix}}} \int_0^{z_{\text{mix}}} \rho(z) \, dz \tag{3}$$

дает плотность неустойчивого слоя. Вводится функция неустойчивости, рассчитываемая следующим образом:

$$\begin{cases}
Ut = \frac{g}{\rho_0} \int_0^z (\rho(z) - \rho_M) dz, & z \le z_{\text{mix}}; \\
Ut = 0, & z > z_{\text{mix}}
\end{cases};$$
(4)

далее k_u находится с помощью функции Ut:

$$k_u = \gamma z_{\text{mix}} \sqrt{Ut} \,, \tag{5}$$

где у – постоянная.

Коэффициент диффузии импульса (k_m) рассчитывается с помощью аппроксимации числа Прандтля — $\Pr = k_m \, / \, k$:

$$\lg \Pr = \begin{cases} -0.67 + 0.138P, P < 0.6\\ 0.364P + 0.165P^2 - 0.082P^3 - 0.077P^4, 0.6 \le P \le 0.8\\ 0.079 + 0.301P^2, P > 0.8 \end{cases}$$
 (6)

$$P = \begin{cases} \lg(1+St), St \ge 0\\ P = -\lg(1+Ut), Ut > 0 \end{cases}$$

Данная схема была применена для расчета локальной эволюции верхнего слоя океана по данным автоматических станций. Результаты этих экспериментов ([6, 7]) по-казали, что вышеприведенный алгоритм воссоздает процессы турбулентного перемешивания в пограничном слое океана по крайней мере не хуже, чем обычно применяемые современные параметризации. Преимуществом данного подхода, так же как и теории Монина—Обухова, являются отказ от каких-либо спекуляций о природе турбулентности и переход на установление необходимых закономерностей на основе экспериментальных данных.

В некоторых регионах Мирового океана возможен сильный горизонтальный перенос массы на отдельных глубинах, вследствие чего неустойчивость возникает не на поверхности, а внутри столба воды. Поэтому перед включением в трехмерную модель в схему было необходимо включить этот эффект. В результате был изменен способ расчета k_u . В новом варианте предполагается возможность существования в столбе воды нескольких неустойчивых слоев. Их поиск осуществляется следующим образом: от поверхности воды (верхняя граница возможного неустойчивого слоя zb) находится минимальная глубина, удовлетворяющая условию, аналогичному (2):

$$\frac{1}{z} \int_{z_{b}}^{z} \rho(z) dz \ge \rho(z). \tag{7}$$

Точка, в которой (7) выполняется, считается нижней границей неустойчивого слоя; для него находятся средняя плотность, функция неустойчивости и k_u :

$$\rho_M = \frac{1}{z - zb} \int_{zb}^{z_{\text{mix}}} \rho(z) dz, \qquad (8)$$

$$Ut = \frac{g}{\rho_0} \int_{z_h}^{z} (\rho(z) - \rho_M) dz, \qquad (9)$$

$$k_{u} = \gamma(z - zb)\sqrt{Ut} \ . \tag{10}$$

Найденная z принимается также верхней границей следующего неустойчивого слоя (т.е. zb), и вся процедура поиска нижней границы, ρ_M , Ut, k_u , уже для нового слоя продолжается дальше.

В случае N-устойчивых уровней получается, что, согласно алгоритму (7)—(10), (формально!) будет существовать N неустойчивых слоев, причем плотность ρ_M каждого из них равна непосредственно самой плотности уровня. Тогда на каждом уровне Ut=0 и $k_u=0$. Границы неустойчивых слоев совпадают с границами уровней.

Можно показать, что (7)–(10) являются обобщением (2)–(5). В случае если поток массы поступает только через верхнюю границу (т.е. неустойчивость образуется на поверхности), оба варианта дадут одинаковые результаты.

Эксперименты с моделью Балтийского моря. С целью дальнейшего испытания схема была внедрена в совместную модель циркуляции водных масс и льда в Балтийском море [8–10]. В основе ее гидрологического блока лежит полная система нелинейных уравнений гидродинамики океана в сферических координатах в приближениях гидростатики и Буссинеска. Основные прогностические переменные: трехмерный вектор скорости, потенциальная температура, соленость, отклонения уровня моря от невозмущенной поверхности. Блок циркуляции льда основан на нелинейных уравнениях модели вязко-пластичной реологии Хиблера [11–13], описывающих динамику и термодинамику снежно-ледяного покрова. Прогностические переменные: горизонтальный вектор скорости морского льда, его толщина и концентрация.

Уравнения модели аппроксимировались на B-сетке с горизонтальным шагом 5 миль. По вертикали использовалась z-система координат с 35-ю уровнями по вертикали. В слое от 0 до 15 м dz=3 м, от 15 до 100 м dz=5 м, далее dz=10 м.

Была проведена серия из двух экспериментов. В первом (в дальнейшем тп-эксперимент) использовалась вышеописанная схема, которая была настроена следующим образом: $\alpha = 1.1$, $\beta_s = 1.1$, $\beta_u = 2.7$, $\gamma = 50$. Во втором (bl-эксперимент) применялся изначальный вариант модели, где расчет k осуществлялся алгоритмом на основе уравнения кинетической энергии турбулентности (b):

$$\frac{\partial b}{\partial t} = k_m \left(\left(\frac{\partial V}{\partial z} \right)^2 \right) - \frac{\partial}{\partial z} k \frac{\partial b}{\partial z} + \frac{kg}{\rho_0} \frac{\partial \rho}{\partial z} - \varepsilon, \tag{11}$$

$$\varepsilon = C_2 b^{3/2} l_e^{-1}, \quad k = C_1 l \sqrt{b}, \quad k_m = C_3 l \sqrt{b},$$
 (12)

где l, l_e — масштабы турбулентности, для определения которых применялся модифицированный параболический профиль:

$$l = \kappa \left(1 - C_4 \frac{z(H - z)}{H^2}\right) \frac{z(H - z)}{H},\tag{13}$$

где $l_{\varepsilon} = l$, H – глубина.

Коэффициент C_I рассчитывался с помощью следующей функции устойчивости:

$$C_1 = \frac{C_5}{(1 - C_6 \cdot \text{Ri})},\tag{14}$$

где Ri — число Ричардсона. Остальные подгоночные коэффициенты имели следующие значения: $C_1 = 1$, $C_2 = 0.09$, $C_3 = 1$, $C_4 = 4$, $C_5 = 2$, $C_6 = 3$.

Оба эксперимента проводились в течение 30 лет, с 1970 по 2000 г. В качестве атмосферного воздействия использовались поля, полученные метеорологической моделью HIRLAM [14]. Начальные и граничные условия были взяты из базы данных BED Стокгольмского университета [15]. Результаты расчетов сравнивались с данными, полученными за вышеуказанный период на 16 станциях, где измерялись профили температуры и солености [16]. Область интегрирования и расположение станций с их номерами показаны на рис. 1, их названия и координаты приведены в табл. 1.

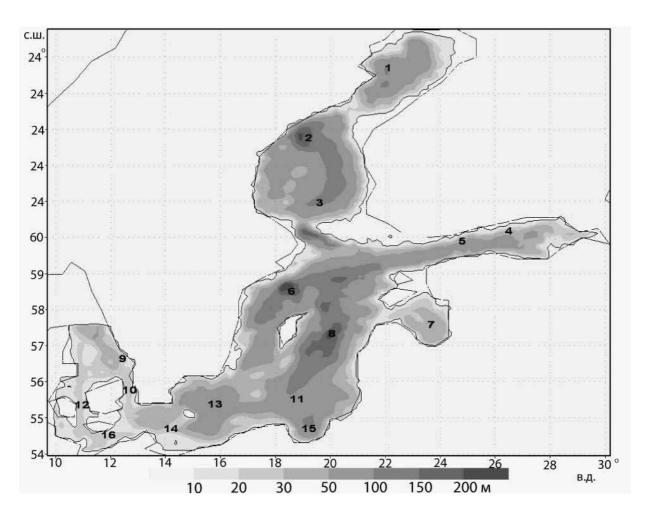


Рис. 1. Рельеф дна области интегрирования и месторасположение станций.

Названия и координаты станций

Номер станции	Название станции	Широта	Долгота	Номер станции	Название станции	Широта	Долгота
1	Bothnian Bay	64.44	22.04	9	Anholt E	56.20	12.07
2	Bothnian Sea US3	62.45	19.12	10	Landskrona W	55.52	12.45
3	Bothnian Sea US3	61.03	19.34	11	Se Gotland basin	55.33	18.24
4	Gulf of Finland F1	60.08	26.20	12	Great Belt	55.31	10.52
5	Gulf of Finland LL7	59.51	24.04	13	Bornholm deep BY5	55.15	15.59
6	Landsort Deep BY31	58.35	18.14	14	Arkona BY2	55.00	14.05
7	Gulf of Riga	57.35	23.35	15	Gdansk Deep	54.50	19.19
8	Gotland deep BY15	57.20	20.03	16	Fehmarn Belt	54.34	11.20

Из рассчитанных моделью полей был получен климатический сезонный ход переменных в точках с координатами стаций на соответствующих данным наблюдений глубинах, такое же осреднение по времени было проведено с измерениями.

На рис. 2 представлены профили среднеквадратической ошибки сезонного хода температуры. Анализируя результаты, можно отметить следующее: в двух точках (ст.4, 12) ошибка тп-эксперимента по всем глубинам меньше или равна ошибке bl-экперимента; станций, на которых бы наблюдалась обратная ситуация, нет. В шести случаях (ст.1–3, 6, 10, 14) тп-эксперимент показал значительно лучший результат, чем bl-эксперимент несмотря на то что ошибка последнего на некоторых глубинах меньше. Значительное увеличение ошибки при использовании схемы на основе теории подобия произошло для точек 11 и 13. При этом стоит отметить, что на поверхности тп-эксперимент в обоих случаях показывает меньшее расхождение с данными наблюдений, чем bl-эксперимент. Максимальная ошибка у тп-эксперимента составила 2.4 градуса (ст.10, глубина 25 м), у bl-эксперимента — 2.6 градуса (ст.4, глубина 15 м).

Все это, а также данные в табл. 2 позволяют говорить о том, что тп-эксперимент в целом лучше воспроизвел температурный режим Балтийского моря, чем bl-эксперимент. Кроме этого, необходимо добавить, что тп-эксперимент практически на всех станциях показал уменьшение ошибки в воссоздании температуры поверхности. Данная характеристика является определяющей при расчете потоков тепла и влаги в атмосферу, а ее качественное воспроизведение имеет особую важность при возможных экспериментах с совместной моделью атмосферы и океана.

Анализируя графики на рис. 3, сложно сделать однозначный вывод, какой из экспериментов показал лучшее согласование с данными наблюдений по солености. Максимальные ошибки обоих экспериментов примерно равны (ст.10, глубина 15 м). Поэтому оценим качество воспроизведения солености по суммарной среднеквадратической ошибке, приведенной в табл. 3.

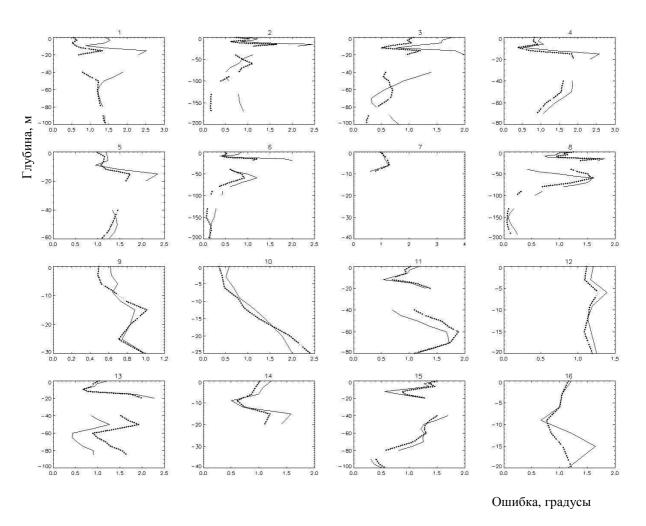


Рис. 2. Среднеквадратическая ошибка воспроизведения климатического сезонного хода температуры.

Сплошная линия – bl-эксперимент, пунктирная – тп-эксперимент.

Таблица 2 Суммарная по всем глубинам среднеквадратическая ошибка воспроизведения температуры, градусы

Номер станции	<i>bl-</i> экспе- римент	тп- экспе- римент	Номер станции	<i>bl-</i> экспе- римент	тп- экспе- римент
1	1.5	1.0	9	0.8	0.7
2	1.0	0.7	10	1.1	1.1
3	1.0	0.7	11	1.1	1.3
4	1.5	1.2	12	1.2	1.2
5	1.4	1.3	13	1.0	1.3
6	0.7	0.5	14	1.2	1.0
7	1.5	1.3	15	1.1	1.1
8	0.8	0.8	16	1.1	1.0

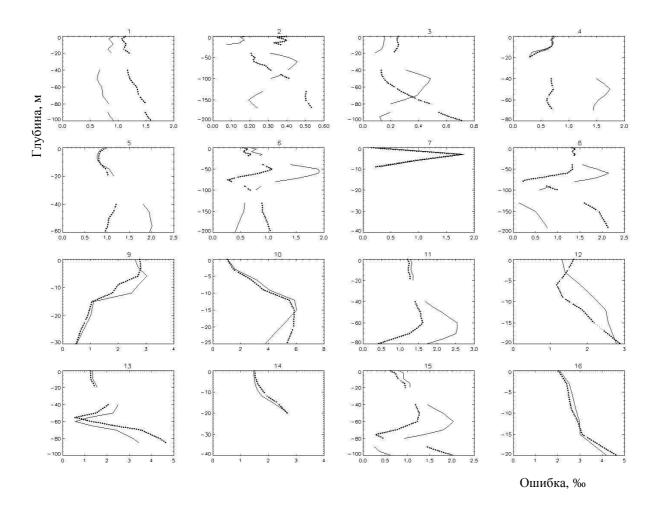


Рис. 3. Среднеквадратическая ошибка воспроизведения климатического сезонного хода солености.

Сплошная линия – bl-эксперимент, пунктирная – тп-эксперимент.

 $Tаблица \ 3$ Суммарная по всем глубинам среднеквадратическая ошибка воспроизведения солености, %

Цомор	bl-	тп-	Номер	bl-	тп-
Номер станции	экспе-	экспе-	станции	экспе-	экспе-
	римент	римент	Станции	римент	римент
1	0.8	1.3	9	1.9	1.7
2	0.3	0.4	10	3.8	3.9
3	0.2	0.3	11	1.8	1.3
4	1.1	0.6	12	2.1	1.8
5	1.4	1.0	13	1.9	2.1
6	1.0	0.7	14	1.9	1.9
7	0.7	0.5	15	1.2	1.0
8	1.2	1.3	16	2.9	2.9

Как видно из табл. 3, в восьми случаях ошибка тп-эксперимента меньше ошибки bl-эксперимента, в шести случаях больше, и в двух случаях они равны. Можно сказать, что в целом, тп-эксперимент воспроизвел поля солености ближе к данным наблюдений, чем bl-эксперимент. Улучшение расчета данной характеристики незначительно, что связанно с особенностями циркуляции в Балтийском море. Основными процессами, определяю-

щими эволюцию полей солености, являются сток рек и адвекция из Северного моря. Поэтому замена алгоритма расчета турбулентного перемешивания не могла привести к существенному уменьшению ошибки.

Результаты эксперимента, представленные в работе, показали, что схема, основанная на теории подобия, способна качественно воспроизводить турбулентные процессы в моделях циркуляции океана. При использовании этой параметризации удалось улучшить расчет гидрологического режима Балтийского моря. При этом стоит отметить некоторую специфику данного водоема, которая связанна с его малой глубиной, из-за чего поверхностный и придонный пограничные слои могут объединяться. Такой режим достаточно сложен для воспроизведения, и можно сказать, что предложенная схема воссоздала его лучше, чем широко распространенная *bl*-схема.

Алгоритмы турбулентного перемешивания крайне чувствительны к настройкам, которые выражаются в оптимальном подборе коэффициентов. Предложенная параметризация имеет сравнительно небольшое число подгоночных параметров, что делает ее достаточно удобной в использовании. В расчетах по этой схеме применяются основные гидрологические характеристики и не требуется введения дополнительных переменных, что необходимо при переходе, например на $b\varepsilon$ -схему, которая помимо (11) использует прогностическое уравнение для скорости диссипации ε .

Все это позволяет рекомендовать данный метод при решении различных задач по океанским моделям.

Литература

- 1. Zilitinkevich S.S., Mironov D.V. Theoretical model of thermocline in a freshwater basin // J. Phys. Oceanogr. 1992. V.22. P.988–996.
- 2. *Large,W.G., McWilliams J.C., Doney S.C.* Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization // Rev. of Geophys. 1994. V.32. P.363–403.
- 3. Garrett C. Processes in the surface layer of the ocean // Dyn. Atmos. Ocean. 1996. V.23. P.19–34.
- 4. Gregg, M.C. Diapycnal mixing in the thermocline: a review // J. Geophys. Res. 1987. V.92, P.5249–5286.
- 5. *Каган Б.А., Софьина Е.В., Тимофеев А.А.* Об индуцируемом внутренними приливными волнами диапикническом перемешивании в Северном Ледовитом океане // Изв. РАН. Физика атмосферы и океана. 2010. Т.46, № 2. С.246–254.
- 6. *Булгаков К.Ю.* Расчеты эволюции теории океана, основанные на теории подобия // Изв. РАН. Океанология. (в печати).
- 7. *Chalikov D*. Similarity theory and parameterization of mixing in the upper ocean // Environmental Fluid Mechanics. 2004. V.4. P.385–414.
- 8. *Неелов И.А.* Математическая модель синоптических вихрей в океане // Океанология, 1982. Т.22, № 6. С.875–885.
- 9. Neelov I.A., Eremina T.R., Isaev A.V., Ryabchenko V.A., Savchuk O.P., Vankevich R.E. A simulation of the Gulf of Finland ecosystem with 3-D model // Proc. Estonian Acad. Sci. Biol. Ecol. 2004. № 52, 3. P.346–359.
- 10. *Myrberg K.*, *Ryabchenko V.*, *Isaev A.* et al. Validation of three-dimensional hydrodynamic models of the Gulf of Finland // Boreal Env. Res. 2010. V.15. N 5. P.453–479.
- 11. Hibler III W.D. A dynamic thermodynamic sea ice model // J. Phis. Oceanogr. 1979. V.9. P.815-846.
- 12. Hibler III W.D., Bryan K. A diagnostic ice-ocean model // J. Phis. Oceanogr. 1987. V.17. P.987–1015.
- 13. *Holland D.M.*, *Myask L.A.*, *Manak D.K.* Sensitivity study of a dymaic thermodynamic sea ice model // J. Geophis. Research. 1993. V.98. P.2561–2586.
- 14. HIRLAM scientific documentation. System 5.2. 2002.
- 15. URL:http://www.nest.su.se/bed/ (дата обращения: 17.06.2011).
- 16. Gustafson B.G., Rodriguz-Medina M. Validation data set compiled from Baltic Environmental Database (Ver.2, January 2011) // Technical Report. 2011. N 2.

Статья поступила в редакцию 03.11.2011 г.

