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ЭНЕРГЕТИЧЕСКИЕ СПЕКТРЫ АНСАМБЛЯ  

НЕЛИНЕЙНЫХ КАПИЛЛЯРНЫХ ВОЛН НА ПОВЕРХНОСТИ ЖИДКОСТИ 

 

 
Обсуждается проблема описания спектров нелинейных капиллярных волн на поверх-

ности жидкости. Обычно трехволновые взаимодействия рассматриваются как главный 

фактор, определяющий энергетический спектр таких волн. Показано, что необходимо 

принимать во внимание четырехволновые взаимодействия капиллярных волн, которые 

ведут в кинетическом режиме волновой турбулентности к появлению степенной асим-

птотики в энергетическом спектре k
13/6

 в случае одномерной задачи и k
3/2

 в простран-

ственной задаче. 
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It is a well known fact that internal waves in the ocean manifested on the sea surface via 

their interaction with short gravity and capillary waves, e.g. [1–3]). The description of the wind 

ripple is a very difficult task due to their strong nonlinearity, breaking effects and wind interac-

tion. Moreover, even if capillary waves are not bounded and have small amplitudes, their dy-

namics is not completely understood and a lot of laboratory experiments have been recently 

conducted, for instance [4–7] and many others. 

Theoretically, first analysis of nonlinear interaction of capillary waves have been done in 

pioneer work by Zakharov and Filonenko [8]. In this paper kinetic equation for 3-wave interac-

tions of capillary waves has been first written out and its stationary solution has been found, in 

the form of power energy spectrum Ek ~ k
-

,  > 0 [9]. In the case when dispersion function de-

pends only on one dimensional parameter, say the gravity constant g for water surface gravity 

waves or surface tension ζ for capillary waves, one can compute ν using dimensional analysis, 

without solving the corresponding kinetic equation. E.g. for a direct cascade we have: 

ν = 2α + d − 6 + (5 − 3α − d)/(N − 1),                                                 (1) 

where α is defined by the form of dispersion function α~ω k , d is the space dimension of the 

system and N is the minimal number of waves constituting a resonance interaction. 

As it was mentioned above, for kinetic wave turbulence theory to occur, a number of as-

sumptions must hold, some of which are not easily verified in laboratory. However the advan-

tage in this case is that the knowledge of dispersion function in a wave system immediately 

yields the explicit form of energy distribution over the scales. 

On the other hand, if we abandon any one of these assumptions, the form of energy distri-

bution will be changed drastically. For instance, in the standard laboratory set up, narrow fre-

quency band excitation is used. In this case, not a statistically described K-cascade is observed, 

but a D-cascade which is formed by a set of distinct modes [10]. The spectrum of the D-cascade 

can be computed deterministically by the increment chain equation method (ICEM); its form de-

pends of the excitation parameters [11]. During formation of a D-cascade spectrum broadening 
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occurs in such a way that after 10 steps of the D-cascade more than 1000 non-cascading modes 

become excited thus forming a distributed energy state and possibly a K-cascade.    

In this paper we analyze the spectra formed in K- and D-cascades of the capillary waves 

and give some clues for understanding whether a K-cascade or a D-cascade is observable in an 

experiment. 

Three-wave interactions of capillary waves. As it was mentioned above, kinetic wave 

turbulence theory is developed for initially distributed systems and is based on a number of as-

sumptions. One of the main steps while developing corresponding wave kinetic equation is to 

determine the minimal possible resonance in the wave system under consideration. Capillary 

waves are usually regarded as a 3-wave system while 3-wave resonance conditions for capil-

lary water waves have infinitely many solutions. 

However, there are important properties of the resonance solutions which should be 

checked before deciding whether a wave system may be regarded as a 3-wave system or also 4-

wave interactions should be taken into account. These properties are: a) interactions should be 

local  in k-space (only waves with wavelengths of the same order do interact; b) interactions 

should be locally isotropic (no dependence on direction); c) wavevectors should be alsmost 

collinear. Below in this section we study the properties for 3-wave resonant interactions of ca-

pillary water waves aimung to check the properties ac. 

Three-wave resonance conditions for capillary water waves with dispersion function 
2/3ζω k  read 

,2/3

3

2/3

2

2/3

1 kkk     321 kkk  .                                                (2) 

Case 1. Wavevectors d

j Zk


  have integer coordinates (1, 2, 3, e.g. wave interactions in 

a resonator are regarded) and d is arbitrary. In this case (2) has no solution for arbitrary dimen-

sion d of the wave vectors [12]. 

Case 2. Wavevectors 
1

Rk j  have real coordinates and d = 1. In this case 

,0or0)( 21

2/3

21

2/3

2

2/3

1  kkkkkk                                            (3) 

and one can see immediately that for all positive jk  the right hand side of (3) is always greater 

than its left hand side if both 0jk . If ,, 21 ckkkk  with some constant 1 ≤ c ≤ 10, abso-

lute resonance width 

2/32/32/32/32/32/32/32/3

321
2

3
)1(1])1[(ωωω k

c
cckkckckA           (4) 

is rapidly growing function of k when jk . In particular, if ,21 kkk   2/382.0 kA  . 

Case 3. Wavevectors 
2

Rk j  have real coordinates, d = 2, and all three wavevectors are 

collinear. This case can obviously be reduced to the previous one by an appropriate rotation of 

coordinate axes. 

Case 4. Wavevectors 
2

Rk j  are real valued and non-collinear. One might argue that if 

in this case a great amount of almost collinear wavevectors form approximate triads with small 

resonance width, we still can expect manifestation of 3-wave kinetic regime in laboratory expe-

riments in the form of power energy spectrum 
2/7

3, ~ kEk . This case has been studied numeri-

cally and the results are as follows. 

Resonance width. Absolute resonance width A  explicitly depends on 1k  and consider-

ing if it is «small» or «large» the value of 1k  should, of course, be taken into account. It is in-
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tuitively clear that for larger vectors larger resonance width is tolerable, and vice versa. Rela-

tive resonance width 
R , allowing to distinguish between various wave turbulent regimes, 

might be introduced in a number of ways, e.g. [13, 14] and others;  the problems with introduc-

ing a general cumulative function 
R  are discussed in [10], Ch.6. 

To perform numerical study of solutions of (2), for a pair of two-dimensional wave vec-

tors ),( 111 nmk  , ),( 222 nmk  we define relative resonance width as absolute resonance of 

proportional pair with norm 1, understanding by the norm of a pair of two-dimensional vectors 

that of the corresponding vector in 4
R : 2

2

2

2

2

1

2

121 ),( nmnmkk   so that 

         4/32

21

2

21

4/32

2

2

2

4/32

1

2

1
~~~~~~~~ nnmmnmnmR  ,                                (5) 

where ),(/~
21 kkmm jj   and ),(/~

21 kknn jj   with j=1,2. 

Wavenumbers, norms and angles. Our first series of numerical simulations served to cast 

a first glance at distribution of wavevectors satisfying (2) in the k-space, primarily, if they are 

distributed evenly over the computation domain or concentrated in some restricted subdo-

mains. Calculations were performed on d
Z  grid fragments 50,,,50 2211  nmnm  or 

100,,,0 2211  nmnm . 

 

   
 

Fig.1. Two-dimensional wavevectors 21,kk  satisfying (2).  

a  wavevectors with non-negative coordinates which interact with vectors with arbitrary (positive or negative) 

coordinates. Computation domain 50,50 11  nm ; b  all wavevectors interacting with those shown in the 

previous panel. Same computation domain; c  both wavevectors have non-negative coordinates. Computation 

domain 100,0 11  nm . Wavevectors from the lower triangle interact only with vectors  

from the upper triangle and vice versa. 

 

Exact resonances (with 0R ) are achieved for pairs ( 0,1k ) and ( 2,0 k ) only 

(cf.Case 1), while for all other pairs ( 21,kk ) approximate interactions may take place. In the 

Fig.1, left panel, all wavevectors 21,kk  with non-negative coordinates taking part in approx-

imate interactions are shown, and their distribution appears to be fairly even. However, if one 

of the wavevectors, say 
1k , has non-negative coordinates, all 2k  interacting with such (Fig.1, 

b), are distributed in k-space quite irregularly, leaving completely empty the third quadrant and 

the most part of the first quadrant. Irregularity becomes even more striking if we consider inte-

racting pairs where both 21,kk  have non-negative coordinates (Fig.1, c). The most part of the 

domain consists of wavevectors not participating in interactions, while interacting vectors are 

contained in narrow triangles along the axes. Moreover, a simple check shows that wavevec-
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tors from the lower triangle interact only with vectors from the upper triangle and vice versa. 

are shown in the Fig.1, a. 

To characterize the ratios of norms of interacting vectors and angles between them, for 

each solution we computed the ratio of the vector norms 
21 / kk  and the corresponding angle 

(


21
kk ) (see Fig.2). It can be seen immediately that solution set is highly anisotropic – angles 

between interacting wavevectors all belong to the narrow band between 75 and 87, i.e. inte-

racting wavevectors are almost perpendicular. Norms of the interacting wavevectors can differ 

by more than 2 orders (Fig.2, a) – maximal ratio found in our solution set is 
21 / kk = 101.8. For 

more than 10 % of all the solutions, 
21 / kk > 10. Restriction of our attention to interactions of 

wavevectors with norms of the same order makes angle anisotropy even more pronounced 

(Fig.2, b) – all angles now lie between 75 and 81, i.e. the band width becomes twice smaller. 

Standard averaging by angles spectra [14], obviously can not give any reliable information in 

this case. 

Resonance curves. Solution distribution irregularities demonstrated above have an ele-

gant explanation. Indeed, let us notice two simple properties of the resonance set of wavevec-

tors satisfying (2): 

 if a pair (k1, k2) is a solution, then every (ck1, ck2) is also a solution for any Rc


 ; 

 if a pair (
21,kk ) is a solution, then every rotated pair is also a solution. 

Therefore, it is enough to compute all vectors 
2k  producing resonant interactions with 

some given 
1k , say 

1k = (0, 1) to obtain a clear view of the whole resonant interaction set. In-

deed, all resonance partners of 
1k = (0, 1) constitute a smooth curve shown in Fig.3. This curve, 

as a function n(m), starts with a flat region 2/3~ mn  (Fig.3, a), then becomes steeper and for m 

→ ∞ has asymptotic 2/1~ mn  (Fig.3, b). Notice that the two asymptotic regions lie a few mag-

nitudes of 10 apart and can not be illustratively presented in one figure; so we proceed with 

schematic representation (Fig.4).  
 

  
 

Fig.2. Dependence of ratio of interacting vectors’ norms (longer to shorter)  

on the angle between vectors.  

a  complete picture in computation domain 100,0  jj nm ; b  zoomed presentation of the initial interval 

(ratio ≤ 10) of the left panel. Axes X and Y denote angles (in grad) and ratios correspondingly. 
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Fig.3. Resonance curve of vector (0, 1) in k-space, for dispersion function 
2/3~ω k .  

a  the initial segment of the curve: 
2/3~1 mnm  ;  

b  the overall view of the curve: for 
2/1~1 mnm  . 

 

 
 

Fig.4. Color online. Resonance curves in k-space (schematic representation).  

a  for the vector )1,0(1 k  all vectors 2k  lie on the interaction curve shown; b  two interacting vectors lie on 

each other’s resonance curves reciprocally. Resonance curve of the rotated vector is shown by the dashed line.  

 

The tangent to the curve drawn from (0, 0) gives k2 with the minimal angle to k1 ~74.9. 

We also see that the unit vector can interact both with vectors of arbitrarily small and arbitrari-

ly large norms 2k . Notice that both for 02 k  and 2k  the angle between k1 and k2 

2/ . Now, any vector k  R can be produced by stretch and rotation of our unit vector, and 

its resonance curve is obtained by stretching the curve of the unit vector (with the same coeffi-

cient) and rotation (by the same angle). If two vectors interact resonantly, then each of them 

lies on the resonance curve of another (Fig.4, b). We may conclude with confidence that condi-

tions for 3-wave kinetic regime to occur are decidedly violated. 

Accordingly, for describing K-spectrum of the system of capillary waves with distributed 

initial state we have to regard 4-wave resonances, i.e. take N = 4 in (1). This conclusion is sup-

ported experimentally. Indeed, the evidence of strong four-wave coupling in nonlinear capil-

lary waves has been identified in [4] by computing tricoherence as 

,/η
2

321

2

321

2
*

321321

2

 FFFFFFFF                                            (6) 

where jF  is the Fourier component of the surface elevation at the frequency j . In general, 

tricoherence 2  can change from 0 (no phase coupling) to 1 (coherent phases); in experiments 

reported in [4] the level of tricoherence 5.02   has been observed. 
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As K-spectrum relies on the broad excitation and in usual laboratory experiment we have 

to deal with narrow frequency band excitation. The standard assumption is that starting with 

one excited frequency, a distributed state will establish suitable for application of kinetic wave 

turbulence theory. The transition from one-mode excitation to the broad excitation is described 

by dynamic energy cascade formed by the set of distinct modes and can be computed by the 

increment chain equation method (ICEM) [11]. How to apply it for the case of capillary waves 

is shown in the next section. 

Dynamic energy cascade of capillary waves. The model of the dynamic energy cascade 

– D-cascade – generation has been first proposed in [10]; the physical mechanism underlying 

formation of a D-cascade is modulation instability. The phenomenon of modulation instability 

has been encountered in various fields and is known under different names – parametric insta-

bility in classical mechanics, Suhl instability of spin waves, Oraevsky-Sagdeev decay instabili-

ty of plasma waves, modulation instability in nonlinear optics, Benjamin-Feir instability in 

deep water waves, etc. 

Modulation instability is the physical phenomenon which can be described as the decay 

of a carrier wave 0ω  into two side-bands 21 ω,ω : 

,ω2ωω 021     ζ2 021  kkk


,                                                   (7) 

.1ω0,ωωω,ωωω 0201                                          (8) 

A wave train with initial real amplitude A, wavenumber ,kk


 and frequency ω  is modula-

tionally unstable if 

.2ω/ω0  Ak                                                                (9) 

Eq.(9) described so-called instability interval for the wave systems with a small nonlinearity of 

order of ε ~ 0.1 to 0.2, first obtained in [15].  It is also established for gravity surface waves 

that the most unstable modes in this interval satisfy the condition 

.1ω/ω  Ak                                                                   (10) 

The essence of the increment chain equation method is the use of (10) for computing the 

frequencies of the cascading modes. At the first step of the D-cascade, excited wave with fre-

quency 0ω  is regarded as the carrier mode. The distance to the next cascading mode 

10 ωωω   with frequency 0ω  is chosen in such a way that condition (10) is satisfied; it 

is called maximum increment condition. 

At the next step of the D-cascade, the mode with frequency 1ω  is regarded as a carrier 

mode for the next step of the D-cascade, and so on. This procedure can easily be written out as 

a recursive relation between neighboring cascading modes: 

)ωω( nnnnnn kAAAp  .                                                      (11) 

Here notation np  is chosen for the fraction of energy transported from the cascading mode 

nA  to the cascading mode ,1nA i.e. .1 nnn ApA   The Eq.(11) describes two chain equa-

tions: one chain equation with ”+” for direct D-cascade with 1ωω  nn  and another chain eq-

uation with ”-” for inverse D-cascade with 1ωω  nn . All computations below are given for 

direct D-cascade; computations for the inverse cascade are quite similar; they are omitted. 
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Theoretically ),ω,( 00 nApp nn   is a function of the excitation parameters 00 ω,A  and 

the step n. However, as in a lot of experiments it is established that np  depends only on the 

excitation parameters and does not depend on the step n, all the formulae below are given for 

this case. Accordingly, notation p is used instead of the notation np . This means that 

0

2/

1 ApApA n

nn   and as energy
2~ nn AE  it follows 

2

0~ ApE n

n , i.e. energy spec-

trum of the D-cascade has exponential form as in experimental data for capillary waves, e.g. [6, 

7]. 

Taking Taylor expansion of the RHS of the chain equation and regarding only two first 

terms of the resulting infinite series, one can derive a very simple ordinary differential equation 

describing stationary amplitudes of the cascading modes satisfying (10): 





nn

nnnnnnn
k

p
AkAAAAp

ω

1
ω                                     (12) 

  ),ω(
ω

ω
)1()ω( 00 AC

k

d
pA

nn

n
n ,                                           (13) 

where 00 ,ω A  are excitation parameters. 

The maximum increment condition for the weakly nonlinear capillary waves with ε ~ 

0.10.2 differs from (10) by the constant coefficient 1/24: 

  1ω
24

1
/ω 








 Ak ,                                                                   (14) 

as was first shown in [16]. As for capillary waves 2/3~)(ω kk , one gets easily e.g. for direct D-

cascade that  

 3/5ω
24

1
)1( nnAp                                                   (15) 

2

)(3/2)( ω
16

)1(
~)ω(














  Dir

n

Dir

n C
p

E , where .ω
16

1 3/2

00

)( 


p
AC Dir

                   (16) 

K-spectrum VS D-spectrum. For comparing energy spectra 
kE  and 

nE , it is conve-

nient to rewrite 
nE  as 

0EbE n

n

 with b = 1/p, b > 1. Thus we have to compare functions 
xb1γ  and ax2γ , where the magnitudes of parameters 

21 γ,γ,,ba  are defined by the specific 

wave system. As for a, b > 1 

,0)/(lim 


xa

x
bx                                                                     (17) 

nk EE   in the long run. However, for some combinations of parameters and in some finite 

domains in k-space, the opposite relation can take place, 
nk EE  ; the spectra 

kE  and 
nE  

might be quite close and even coincide for some k (see Fig.5, left panel). Main characteristics 

allowing distinguishing between kinetic and dynamic cascades which can be easily observed in 

experimental data are summarized in the Table below. 
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Fig.5. In both panels, function 5.1x  is shown by bold black line. Function xb is shown by dashed 

lines of various colors for b = 1.4; 1.6 and 2.3. 

 
Property 

kE  nE  

Coherent phases no yes 

Dependence on the excitation parameters no yes 

Local interactions yes no 

Existence of inertial interval yes not important 

Small parameter 210~ 
 

110~ 
 

 

As formation of the D-cascade is accompanied by the spectrum broadening, at some mo-

ment of time phases become stochastic, and s-wave resonant interactions may appear and ki-

netic regime may be developed (shown schematically in the Fig.5, right panel). 

This scenario seems to be confirmed in laboratory experiments with parametrically ex-

cited capillary waves [6], the container shaken at frequencies from 0.5 to 3500 Hz. Energy con-

tained in a zero-frequency band and a dynamic cascade are observed; they contain total energy 

totE  of the system at lower forcing. Kinetic cascade occurs first at frequencies about 220 Hz 

and its energy grows (with increase of the forcing frequency) from 
totE01.0  to 

totE23.0 , 

while energy contained in the dynamic cascade decreases from 0.82 Etot to 0.46 Etot. 

The understanding of differences between dynamic and kinetic cascades is of the utmost 

importance for correct interpretation of the experimental observations. Thus, in [5] weak turbu-

lence of capillary waves in Helium has been studied and the formation of a local maximum of 

the wave-spectrum near a viscous cut-off was observed (under periodic driving force) and cor-

rectly attributed to the discrete regime (interactions are non-local). 

On the other hand, the authors conclude that «in the inertial range dependence of the peak 

amplitudes on frequency is described well by a power law function mI ω~ω
 with the index 

7.3m . This is in agreement with the weak turbulence theory which gives the value m = 

21/6» ([5], p.032001-3). As 21/6 = 3.5, the observed and predicted indexes differ by about 6 %. 

It would be worth to check phase coherence in this data in order to understand whether this 

discrepancy is due to the available accuracy of measurements or while in fact a dynamic cas-

cade is observed and not a kinetic one. 

As the form of D-cascade and K-cascade can be pretty similar for some parameters of ini-

tial excitation, the main characteristic which should checked while estimating the measured 

data are time scales for the cascade formation as explained in details in [19]. 

 

*** 
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In the system of weakly nonlinear capillary waves two types of energy cascades are theo-

retically predicted: K-cascade in the systems with distributed initial state and D-cascade in the 

systems with narrow frequency band excitation. 

As we have shown above, a K-cascade among capillary waves can not be formed by  

3-wave resonant interactions; 4-wave resonant interactions should be regarded instead. Accor-

dingly, a K-cascade of capillary waves is formed at the time scale 4ε/1  with .10~ε 2  

On the other hand, a D-cascade is always formed at the time scale 2ε/1 with 110~ε  , i.e. 

it is formed much faster than a K-cascade. For instance, for capillary water waves with the dis-

persion function 32 ζ
ω k

p
 , the density 33kg/m10ρ   and the coefficient of surface tension 

23 m/seckg1075.72ζ    it is easy to compute corresponding characteristic times. Indeed, say 

for wave length 1 millimeter we have: wave period is 0.0022 sec; time scale for D-cascade 

formation is 0.22 seconds and time scale for 4-wave K-cascade is 2200 seconds which is ap-

proximately 37 minutes. 

Known laboratory experiments with capillary waves confirm the time scale of the  

D-cascade, e.g. [4, 6, 7]. Accordingly, we conclude that energy cascades of capillary waves 

observed experimentally are D-cascades and not K-cascades. 

This fact has also been noticed in numerical simulations [17, 18] and was coined by the 

term «frozen turbulence». It was observed that capillary waves demonstrate fluxless modes, 

there is virtually no energy absorption associated with high-wavenumbers damping in this case 

([18], p.107). This fact has been attributed to the interplay of two facts: discretization of the 

numerical scheme and the absence of exact 3-wave resonances among capillary waves with 

integer wave numbers, first proven in [12]. 

Speaking very generally, if dispersion function )(ω k  has decay type, this only means 

that 3-wave resonance conditions 

321321 ),(ω)(ω)(ω kkkkkk                                      (18) 

may have solutions with real 
jk , even infinite number of solutions. However, this does not 

necessary mean that these solutions possess the properties necessary for the deduction of the 

wave kinetic equation. In particular, if γ~)(ω kk , γ > 1, then both properties formulated in 

Sec.2B hold and the geometry of resonances can be outlined in terms of resonance curves simi-

lar to those shown in Fig.4. 

The results presented in this paper are obtained for an ensemble of free nonlinear capil-

lary waves formed from initial monochromatic disturbance. Next step will be an analysis of the 

ensemble of capillary waves in present of current induced by the internal waves. 
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